ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1985-09-01
    Description: A solid sphere falling through a Bingham plastic moves in a small envelope of fluid with shape that depends on the yield stress. A finite-element/Newton method is presented for solving the free-boundary problem composed of the velocity and pressure fields and the yield surfaces for creeping flow. Besides the outer surface, solid occurs as caps at the front and back of the sphere because of the stagnation points in the flow. The accuracy of solutions is ascertained by mesh refinement and by calculation of the integrals corresponding to the maximum and minimum variational principles for the problem. Large differences from the Newtonian values in the flow pattern around the sphere and in the drag coefficient are predicted, depending on the dimensionless value of the critical yield stress Ygbelow which the material acts as a solid. The computed flow fields differ appreciably from Stokes’ solution. The sphere will fall only when Yg is below 0.143. For yield stresses near this value, a plastic boundary layer forms next to the sphere. Boundary-layer scalings give the correct forms of the dependence of the drag coefficient and mass-transfer coefficient on yield stress for values near the critical one. The Stokes limit of zero yield stress is singular in the sense that for any small value of Ygthere is a region of the flow away from the sphere where the plastic portion of the viscosity is at least as important as the Newtonian part. Calculations for the approach of the flow field to the Stokes result are in good agreement with the scalings derived from the matched asymptotic expansion valid in this limit. © 1985, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1986-01-01
    Description: A statistical model characterizing the granular structure of snow is developed using quantitative stereology. The model is based on specific parameters (e.g. bond radius, grain-size, etc.) which take the form of internal-state variables in a constitutive theory for high-rate deformation of snow. In addition to parameters developed by other authors in previous investigations, a new parameter characterizing the mean bond length is developed. More significantly, general relations are derived for the mean number of bonds per grain and mean number of grains per unit volume without making any assumptions regarding the shape or size of the ice grains, or their respective distributions.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1986-01-01
    Description: A statistical model characterizing the granular structure of snow is developed using quantitative stereology. The model is based on specific parameters (e.g. bond radius, grain-size, etc.) which take the form of internal-state variables in a constitutive theory for high-rate deformation of snow. In addition to parameters developed by other authors in previous investigations, a new parameter characterizing the mean bond length is developed. More significantly, general relations are derived for the mean number of bonds per grain and mean number of grains per unit volume without making any assumptions regarding the shape or size of the ice grains, or their respective distributions.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1986-01-01
    Description: The Digital Thermo-Resistograph is a portable microprocessor-based data-probe system for quick and accurate field collection of snow-cover strength. This was accomplished by constructing a probe with a load cell, a small snow platform for probe-position information, and a Z-80 microprocessor-based data acquisition system. A 64 × 240 dot matrix LCD graphic display unit is used to show immediately complete strength profiles in the field. Sufficient memory for the storage of 25 profiles is provided. Temperature and temperature-gradient collection is also planned as a part of the instrument but as yet this work has not been completed.The results of winter 1984 field tests are presented. The Digital Thermo-Resistograph proved to be fast and reliable in collecting snow-strength information. Comparisons with the ram penetrometer are shown and suggestions for future developments are discussed.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1986-01-01
    Description: The Digital Thermo-Resistograph is a portable microprocessor-based data-probe system for quick and accurate field collection of snow-cover strength. This was accomplished by constructing a probe with a load cell, a small snow platform for probe-position information, and a Z-80 microprocessor-based data acquisition system. A 64 × 240 dot matrix LCD graphic display unit is used to show immediately complete strength profiles in the field. Sufficient memory for the storage of 25 profiles is provided. Temperature and temperature-gradient collection is also planned as a part of the instrument but as yet this work has not been completed.The results of winter 1984 field tests are presented. The Digital Thermo-Resistograph proved to be fast and reliable in collecting snow-strength information. Comparisons with the ram penetrometer are shown and suggestions for future developments are discussed.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1985-01-01
    Description: The equations of motion (continuity and momentum balance) for a dispersed, negatively buoyant particulate of snow entrained in a turbulent airflow contain apparent turbulent forces or turbulent particle buoyancies. These turbulent buoyancies arise from the constitutive assumption that the turbulent fluctuations of the snow phase velocity vector U’s, and the drift snow density ρ’s, are proportional to the deviatoric mean rate of deformation tensor for the airflow.For an established, discretized airflow regime, the momentum balance equation for the snow phase can be solved by finite difference techniques for the snow particle velocity field. The snow phase continuity equation can then be solved for the drift snow density field.The solutions for the snow phase equations of motion for a one dimensional airflow adjacent a solid surface show that the theory can reproduce an inertia! snow particle effect. The snow particle decelerates less rapidly than the airflow, resulting in the snow particle having a positive horizontal impact velocity at the solid surface, where air velocity goes to zero.The solutions for the snow phase equations of motion for mixture flow and subsequent wind-aided snow accumulation on the immediate lee of a model mountain slope show that the theory can reproduce the geometries typical of wind-aided snow accumulation profiles, measured on the lee of mountain slopes.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1985-01-01
    Description: The equations of motion (continuity and momentum balance) for a dispersed, negatively buoyant particulate of snow entrained in a turbulent airflow contain apparent turbulent forces or turbulent particle buoyancies. These turbulent buoyancies arise from the constitutive assumption that the turbulent fluctuations of the snow phase velocity vector U’s, and the drift snow density ρ’s, are proportional to the deviatoric mean rate of deformation tensor for the airflow.For an established, discretized airflow regime, the momentum balance equation for the snow phase can be solved by finite difference techniques for the snow particle velocity field. The snow phase continuity equation can then be solved for the drift snow density field.The solutions for the snow phase equations of motion for a one dimensional airflow adjacent a solid surface show that the theory can reproduce an inertia! snow particle effect. The snow particle decelerates less rapidly than the airflow, resulting in the snow particle having a positive horizontal impact velocity at the solid surface, where air velocity goes to zero.The solutions for the snow phase equations of motion for mixture flow and subsequent wind-aided snow accumulation on the immediate lee of a model mountain slope show that the theory can reproduce the geometries typical of wind-aided snow accumulation profiles, measured on the lee of mountain slopes.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...