ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (87)
  • 1985-1989  (52)
Collection
Years
Year
  • 1
    Publication Date: 2024-02-24
    Keywords: 2,6,10,14-Tetramethyl-7-(3-methylpent-4-enyl)pentadecane, per unit mass total organic carbon; ARK-XX/3; AWI_Paleo; Fram Strait; Gas chromatography - Mass spectrometry (GC-MS); Identification; KAL; Kasten corer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS66; PS66/309-1
    Type: Dataset
    Format: text/tab-separated-values, 84 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-24
    Keywords: Comment; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Belt, Simon T; Brown, Thomas A; Ampel, Linda; Cabedo-Sanz, Patricia; Fahl, Kirsten; Kocis, James J; Massé, Guillaume; Navarro-Rodriguez, Alba; Ruan, Jiaping; Xu, Yunping (2014): An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP25 in marine sediments: key outcomes and recommendations. Climate of the Past, 10(1), 155-166, https://doi.org/10.5194/cp-10-155-2014
    Publication Date: 2024-02-24
    Description: We describe the results of an inter-laboratory investigation into the identification and quantification of the Arctic sea ice biomarker proxy IP25 in marine sediments. 7 laboratories took part in the study, which consisted of the analysis of IP25 in a series of sediment samples from different regions of the Arctic, sub-Arctic and Antarctic, additional sediment extracts and purified standards. The results obtained allowed 4 key outcomes to be determined. First, IP25 was identified by all laboratories in sediments from the Canadian Arctic with inter-laboratory variation in IP25 concentration being substantially larger than within individual laboratories. This greater variation between laboratories was attributed to the difficulty in accurately determining instrumental response factors for IP25, despite provision of appropriate standards. Second, the identification of IP25 by 3 laboratories in sediment from SW Iceland that was believed to represent a blank, was interpreted as representing a better limit of detection or quantification for such laboratories, contamination or mis-identification. These alternatives could not be distinguished conclusively with the data available, although it is noted that the precision of these data was significantly poorer compared with the other IP25 concentration measurements. Third, 3 laboratories reported the occurrence of IP25 in a sediment sample from the Antarctic Peninsula even though this biomarker is believed to be absent from the Southern Ocean. This anomaly is attributed to a combined chromatographic and mass spectrometric interference that results from the presence of a di-unsaturated highly branched isoprenoid (HBI) pseudo-homologue of IP25 that occurs in Antarctic sediments. Finally, data are presented that suggest that extraction of IP25 is consistent between Automated Solvent Extraction (ASE) and sonication methods and that IP25 concentrations based on 7-hexylnonadecane as an internal standard are comparable using these methods. Recoveries of some more unsaturated HBIs and the internal standard 9-octylheptadecene, however, were lower with the ASE procedure, possibly due to partial degradation of these more reactive chemicals as a result of higher temperatures employed with this method. For future measurements, we recommend the use of reference sediment material with known concentration(s) of IP25 for determining and routinely monitoring instrumental response factors. Given the significance placed on the presence (or otherwise) of IP25 in marine sediments, some further recommendations pertaining to quality control are made that should also enable the two main anomalies identified here to be addressed.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Histochemistry and cell biology 88 (1988), S. 545-551 
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary A computer-assisted method is introduced for the morphometric analysis of immunoreactive markers of the innervation of the heart, such as synaptophysin, neuropeptide Y (NPY), neurotensin (NT), substance P (SP), and calcitonin gene-related peptide (CGRP). Video images of stained sections were digitalized and the area density (AD) of the immunoreactive structures was measured by discrimination for grey levels within the myocardium of the right atrium, the perivascular region of epicardial arteries, and the trunk of the bundle of His. Synaptophysin immunoreactivity (IR), which served as a marker for presynaptic vesicles, indicated a dense innervation of the conductive system (AD 1.5241). Marked differences in the pattern of distribution were found between the neuropeptides. The AD of NPY-IR (0.5073) and SP-IR (0.1352) was highest in the perivascular tissue, while NT-IR (0.1628) and CGRP-IR (0.5161) exhibited maximal values in the bundle of His. The computer-assisted morphometric measurement of the AD of immunoreactive markers is suggested to be a suitable method for quantitative studies of the innervation of the heart under normal and experimental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-16
    Description: We describe the results of an inter-laboratory investigation into the identification and quantification of the Arctic sea ice biomarker proxy IP25 in marine sediments. Seven laboratories took part in the study, which consisted of the analysis of IP25 in a series of sediment samples from different regions of the Arctic, sub-Arctic and Antarctic, additional sediment extracts and purified standards. The results obtained allowed 4 key outcomes to be determined. First, IP25 was identified by all laboratories in sediments from the Canadian Arctic with inter-laboratory variation in IP25 concentration being substantially larger than within individual laboratories. This greater variation between laboratories was attributed to the difficulty in accurately determining instrumental response factors for IP25, even though laboratories were supplied with appropriate standards. Second, the identification of IP25 by 3 laboratories in sediment from SW Iceland that was believed to represent a blank, was interpreted as representing a better limit of detection or quantification for such laboratories, contamination or mis-identification. These alternatives could not be distinguished conclusively with the data available, although it is noted that the precision of these data was significantly poorer compared with the other IP25 concentration measurements. Third, 3 laboratories reported the occurrence of IP25 in a sediment sample from the Antarctic Peninsula even though this biomarker is believed to be absent from the Southern Ocean. This anomaly is attributed to a combined chromatographic and mass spectrometric interference that results from the presence of a di-unsaturated highly branched isoprenoid (HBI) pseudo-homologue of IP25 that occurs in Antarctic sediments. Finally, data are presented that suggest that extraction of IP25 is consistent between Accelerated Solvent Extraction (ASE) and sonication methods and that IP25 concentrations based on 7-hexylnonadecane as an internal standard are comparable using these methods. Recoveries of some more unsaturated HBIs and the internal standard 9-octylheptadecene, however, were lower with the ASE procedure, possibly due to partial degradation of these more reactive chemicals as a result of higher temperatures employed with this method. For future measurements, we recommend the use of reference sediment material with known concentration(s) of IP25 for determining and routinely monitoring instrumental response factors. Given the significance placed on the presence (or otherwise) of IP25 in marine sediments, some further recommendations pertaining to quality control are made that should also enable the two main anomalies identified here to be addressed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: In recent years, a novel proxy for the past occurrence of Arctic sea ice has been proposed that is based on the variable marine sedimentary abundance of an organic geochemical lipid derived from sea ice diatoms in the spring. This lipid, termed IP25 (Ice Proxy with 25 carbon atoms), is a highly branched isoprenoid mono-unsaturated alkene that appears to be sufficiently stable in sediments to permit meaningful palaeo sea ice reconstructions to be carried out over short- to long-term timescales. Since the first proposed use of IP25 as a proxy for palaeo sea ice by Belt et al. (2007), a number of laboratories have measured this biomarker in Arctic sediments and it is anticipated that research activity in this area will increase further in the future. The content of this review is divided into a number of sections. Firstly, we describe the scientific basis for the IP25 proxy and its initial discovery in Arctic sea ice, sedimenting particles and sediments. Secondly, we summarise the relatively few studies that have, to date, concentrated on examining the factors that influence the production and fate of IP25 and we identify some areas of future research that need to be addressed in order to improve our understanding of IP25 data obtained from sedimentary analyses. What is clear at this stage, however, it that the presence of IP25 in Arctic marine sediments appears to represent a proxy measure of past seasonal sea ice rather than permanent or multi-year ice conditions. Thirdly, we highlight the importance of rigorous analytical identification and quantification of IP25, especially if measurements of this biomarker are going to be used for quantitative sea ice reconstructions, rather than qualitative analyses alone (presence/absence). Fourthly, we review some recent attempts to make the interpretations of IP25 biomarker data more detailed and quantitative by combining sedimentary abundances with those of phytoplankton- and other sea ice-derived biomarkers. Thus, the bases for the so-called PIP25 and DIP25 indices are described, together with an overview of potential limitations, concluding that investigations into the use of these indices needs further research before their full potential can be realised. In the final section, we provide a summary of IP25-based palaeo sea ice reconstruction case studies performed to date. These case studies cover different Arctic regions and timescales spanning decades to tens of thousands of years.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...