ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geophys. Res. Lett., Luxembourg, Conseil de l'Europe, vol. 142, no. 1, pp. 1185-1188, pp. L09610, (ISSN: 1340-4202)
    Publication Date: 1992
    Keywords: Rheology ; post-glacial ; uplift ; load ; Inelastic ; Modelling
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Geophys. Res. Lett., Tokyo, Terra Scientific Publishing Company, vol. 18, no. 17, pp. 1747-1750, pp. 8010, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1991
    Keywords: Elasticity ; Inelastic ; Plate tectonics ; GRL ; Dziewonski
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-07-08
    Description: A gravitationally self-consistent theory of postglacial relative sea level change is used to infer the variation of surface ice and water cover since the Last Glacial Maximum (LGM). The results show that LGM ice volume was approximately 35 percent lower than suggested by the CLIMAP reconstruction and the maximum heights of the main Laurentian and Fennoscandian ice complexes are inferred to have been commensurately lower with respect to sea level. Use of these Ice Age boundary conditions in atmospheric general circulation models will yield climates that differ significantly from those previously inferred on the basis of the CLIMAP data set.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peltier, W R -- New York, N.Y. -- Science. 1994 Jul 8;265(5169):195-201.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17750657" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1420-9136
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 114 (1993), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A formal inverse theory for mantle viscosity is here applied to a relaxation spectrum derived from the post-glacial uplift of Fennoscandia. the spectrum represents the set of eigenfrequencies (or inverse decay times) for the fundamental mode of viscous gravitational relaxation between the spherical harmonic degrees 14 to 45 and 65 to 80. Theoretical predictions of the eigenfrequencies are based upon the determination of the zeroes of the secular determinant function derived for a spherically symmetric, self-gravitating, visco-elastic planet. Differential kernels relating shifts in the eigenfrequencies to arbitrary perturbations in the radial viscosity profile (i.e. Fréchet kernels) are computed using the variational principle derived by Peltier (1976). the inversions are performed within the framework of non-linear Bayesian inference, and the problem has been parameterized in terms of the logarithm of viscosity.The inversions have yielded a set of robust constraints which all models for the radial viscosity profile below Fennoscandia must satisfy. the a posteriori estimates and variance reduction are found to be insensitive to the a priori variance ascribed to the model layers. the constraints have, furthermore, been summarized into a set of a posteriori estimates of the average model viscosity value in radial regions consistent with the resolving power of the data (which decreases from a radial length scale of approximately 120km at the base of the lithosphere to 1200km at 1000km depth; the data provide essentially no information regarding the mantle rheology below 1200km depth). For example, for Earth models with a lithospheric thickness (LT) of 100 km, the volumetric average logarithm of viscosity in regions in the depth ranges 1040-400 km, 670-210 km and 235-100 km is constrained to be, respectively, 21.03±0.09, 20.70±0.08 and 20.37±0.19. We have repeated the inversions for a number of assumed lithospheric thicknesses and have found that a relatively low-viscosity layer in the sublithospheric region (with respect to the underlying upper mantle) is required for LT ≤ 120km. In this respect we have quantified the previously described trade-off between a decrease in the viscosity of this region and a decrease in LT (Cathles 1975).In forward analyses of the glacial isostatic adjustment data set it is common to use Earth models with isoviscous upper and lower mantle regions. to investigate this ‘two-layer’ case we have also performed inversions which assume perfect correlation amongst the model layers in the upper and, separately, the lower mantle. Under this strict model space limitation, the inversions yield models with upper and lower mantle viscosities in the range 3.7 × 1020-4.5 × 1020 Pa s and 2.2 × 1021-1.9 × 1021 Pa s, respectively. (The ranges are obtained from a suite of inversions using lithospheric thickness from 70 km to 145 km.)The a posteriori constraints generated from the Bayesian inversions are used together with a statistic based on the computed misfit to the Fennoscandian relaxation spectrum, to rule out a number of previously published viscosity models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 108 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The majority of investigations of the glacial isostatic adjustment problem have proceeded by invoking the correspondence principle and solving for the (Laplace) transformed impulse response of the viscoelastic Earth model that is represented in terms of Love number spectra (Peltier 1974). This formulation requires a final inversion of the solution into the time domain, and the present paper is concerned with a comparison and assessment of the three techniques (pure collocation, full normal mode analysis using residue theory, and a hybrid technique which we term mixed collocation) that have been developed to perform it. On the basis of the analysis presented here we conclude that both the full normal mode analysis and mixed collocation can generate accurate inversions of the Love number spectra. We also derive clear guidelines on the choice of collocation points that ensure that the same accuracy is achieved using pure collocation. As a final point we stress anew that, regardless of the technique employed, the accuracy of the inversions can and should be checked by comparing the predicted infinite time-scale response for a Heaviside loading history with an independent calculation of the response for an inviscid Earth with a lithosphere of appropriate thickness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 104 (1991), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A formal inverse theory for mantle viscosity based upon the data of glacial isostatic adjustment is here formulated and applied to synthetic data. In this theory full account has been taken of the normal mode nature of the forward problem for realistic viscoelastic (Maxwell) models of the planet. Since it is impossible to accurately infer the excitation and decay constants of the individual normal modes from the observations, the formalism is cast in terms of the observed gross Earth data in the time domain. In this analysis expressions are required for the first-order perturbations in both the modal amplitudes and relaxation times that are induced by an arbitrary radial perturbation to the starting viscosity profile. A numerical technique is developed which enables us to accurately determine differential kernels for the modal amplitudes. the analogous kernels for the modal decay times are derived analytically (Peltier 1976), and the complete set of kernels is shown to satisfy the physical constraint imposed by the uniqueness of the state of isostatic equilibrium for the viscously incompressible Maxwell models that we employ. When the problem is parametrized in terms of the logarithm of viscosity, the kernels are capable of accurately predicting shifts in the normal mode characteristics for at least an order of magnitude variation in mantle viscosity.Using Bayesian statistics a formal inversion is applied to a set of synthetically generated data. These data, chosen to reproduce the space-time coverage of the actual observables, include a subset related to the global gravity field and a large sequence of idealized relative sea level (RSL) curves. It is found that even very weak a priori constraints can provide a stable and accurate inversion. A resolving power analysis indicates a spatial resolution of approximately 1200km near the core-mantle boundary (CMB) with a gradual improvement to better than 350km in the middle of the upper mantle. Subsets of the synthetic data are inverted in order to examine conditions on stability and accuracy, and to determine their relative contributions to the spatial resolution. Data from progressively older beaches are shown to contribute most to the spatial resolution at all depths, though the improvement in lower mantle resolution converges for data obtained from beaches formed within the last 5000 yr. Furthermore, the RSL curves in the vicinity of the peripheral bulge of the ancient Laurentide ice sheet are significant contributors to lower mantle resolution (as demonstrated in previous analyses of the forward problem). the inversion of this subset of the data also appears to be encouragingly stable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 3803-3805 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A theoretical analysis of the stability of a stratified, two-dimensional Kelvin–Helmholtz billow against three-dimensional perturbations is presented. This predicts the three-dimensional spectrum to be dominated by a shear aligned convective instability, which is localized in the region surrounding the billow core. The results of a direct numerical simulation of the evolution of the three-dimensional stratified mixing layer fully verify the dominance of this convective mode in the mixing transition. The origin of the streamwise streaks of vorticity, which precede turbulent collapse in a stratified shear layer, is thereby explained. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 1267-1284 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The nonlinear evolution of an unstable symmetric jet in incompressible, density stratified fluid is simulated numerically. When N2 is constant and near zero, like-signed vortices pair by way of an instability of the mean flow to a subharmonic disturbance with wavelength twice that of the most unstable mode of linear theory. For small but finite and constant values of N2, however, the individual vortex cores are strained and vorticity is generated at small scales by the action of baroclinic torques. In this case, the mean flow of the fully evolved jet is stable to subharmonic disturbances. The linear stability of the two-dimensional nonlinear basic states to three-dimensional perturbations is examined in detail. From this stability analysis, it is inferred that jet flow with stratification characterized by constant N2 is a poor candidate for IGW generation. However, the existence of an efficient mechanism whereby IGW may be radiated to infinity from the jet core is demonstrated via simulations initialized with a density profile such that N2=J tanh2(z/R). This mechanism is expected to be an important contributor to the wave field observed in a variety of geophysical circumstances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 5 (1990), S. 103-110 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A global two-dimensional one-level seasonal energy-balance model is asynchronously coupled to vertically integrated ice-flow models (which depend both on latitude and longitude) to study the response of the atmosphere-ocean-cryosphere-lithosphere system to solar forcing for the last ice age cycle of the late Pleistocene. The model simulates the position of the North American and European ice sheet complexes at the last glacial maximum satisfactorily. Both the geographic distributions of the ice volumes delivered by the model and their masses are a reasonable approximation to those inferred on the basis of relative sea level data (Tushingham and Peltier 1990). The sensitivity of the coupled model over the last glacial-interglacial cycle to solar forcing is nevertheless low, which suggests that further physical mechanisms will have to be added to the model (such as explicit basal sliding and ice shelves which would respond to sea-level variations and therefore permit marine incursions), if it is to adequately simulate the terminations that control the 105 year ice age cycle. One should also incorporate long-term variations of the greenhouse gases (Manabe et al. 1985b).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...