ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (7)
Collection
Years
Year
  • 1
    Publication Date: 1990-05-01
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-12-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-11-01
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-04
    Description: Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of Rietveld methods for XRD data analysis can provide a powerful tool for quantitative mineralogy and for obtaining crystallographic data on complex minerals.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Joint Workshop on New Technologies for Lunar Resource Assessment; p 50-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical, and biochemical properties. Although known abundances on the Moon are limited (approximately 0.1 percent in mare soils), sulfur is relatively extractable by heating. Coproduction of sulfur during oxygen extraction from ilmenite-rich mare soils could yield sulfur in masses up to 10 percent of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA. Johnson Space Center, The Second Conference on Lunar Bases and Space Activities of the 21st Century, Volume 2; p 429-435
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-25
    Description: Our knowledge of lunar materials is based on (1) sample collections (by the Apollo and Lunar missions, supplemented by Antarctic lunar meteorites); and (2) remote sensing (Earth-based or by spacecraft). The characterization of lunar materials is limited by the small number of sampled sites and the incomplete remote-sensing database (geochemical data collected from orbit cover 20 percent of the lunar surface). There is much about lunar surface materials that remains to be discovered. Listed are some features suspected form present knowledge: (1) Polar Materials; (2) Farside Materials; (3) Crater-Floor Materials; (4) Crater-Wall and Central Peak Materials; (5) Volcanic Shield and Dome Materials; (6) Transient-Event Materials; and (7) Meteoritic and Cometary Materials; This short list of likely discoveries isn't exhaustive. We know much about a few spots on the Moon, but little about the full range of lunar materials.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Arizona Univ., Resources of Near-Earth Space: Abstracts; p 41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Lunar soils or rocks can be mined as sources of ilmenite for producing oxygen. However, separable crystals of loose ilmenite in lunar soils are rare (less than 2 percent) and small (less than 200 microns); most ilmenite in the regolith is locked together with silicate minerals as rock fragments. If fragmentation of rock sources must be attempted to win appreciable amounts of ilmenite (approximately 10 percent or more), selective collection of high-Ti basalt fragments larger than 1 cm for fragmentation and ilmenite beneficiation may be advantageous over extensive processing of fine lunar soil. Many alternative processing schemes for fragmenting rocks on the Moon have been proposed; one process which was tested early in the Apollo program successfully disaggregated lunar and terrestrial basalts by passive exposure to low-pressure alkali (K) vapor. This process is worthy of reinvestigation.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Space 90: The Second International Conference; Apr 22, 1990 - Apr 26, 1990; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...