ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 21 (1992), S. 95-99 
    ISSN: 1432-0983
    Keywords: PHO ; Saccharomyces ; Protein-protein interaction ; Regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have isolated suppressors of a PHO4 c (a positive regulator) mutant which normally confers weak constitutivity for acid phosphatase production on the Saccharomyces cell. One dominant suppressor (PHO80-2) was found to be an allele of PHO80 (a negative regulator) that changes G to A, resulting in substitution of isoleucine for methionine 42 of the Pho80 protein. Substitution of valine (PHO80-3) or leucine (PHO80-4) for the same methionine by site-directed mutagenesis also suppressed PHO c. Suppression by PHO80-2) did show some allele specificity. From these results we were able to delimit the region of PHo80 which may interact with the Pho4 protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 231 (1992), S. 426-432 
    ISSN: 1617-4623
    Keywords: PHO ; PHO85 ; Protein kinase ; S. cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Both PHO80 and PHO85 genes are required to establish the repressed state of the PHO system of Saccharomyces cerevisiae. S1 nuclease protection analysis of the PHO85 transcript revealed that the PHO85 gene contains an intron at the 6th codon of the gene. Each of the fusion proteins, LacZ-Pho80 and LacZ-Pho85, was produced into Escherichia coli and used as an antigen to raise antibodies in a rabbit. Using the affinity-purified antibodies in Western blotting experiments, the PHO85 protein was detected as a 36 kDa and the PHO80 protein as a 34 kDa protein. The PHO80 protein was detected only in extracts prepared from an overproducing strain. The immunoprecipitate containing the PHO85 protein showed protein kinase activity suggesting that PHO85 is a protein kinase gene, which is consistent with the observation that the deduced amino acid sequence of the PHO85 protein resembles that of some protein kinases. The PHO80 protein was found to be phosphorylated in the presence of PHO85 protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 280-286 
    ISSN: 1617-4623
    Keywords: Yeast RAS ; RAS-CAMP pathway ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Heat shock response ; HSP70 ; Saccharomyces cerevisiae ; RAS-CAMP pathway ; Multicopy suppressor of ira1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: abstract The MSI3 gene was isolated as a multicopy suppressor of the heat shock-sensitive phenotype of the iral mutation, which causes hyperactivation of the RAS-cAMP pathway. Overexpression of MSI3 also suppresses the heat shock-sensitive phenotype of the bcyl mutant. Determination of the DNA sequence of MSI3 revealed that MSI3 can encode a 77.4 kDa protein related to the HSP70 family. The amino acid sequence of Msi3p is about 30% identical to that of the Ssalp of Saccharomyces cerevisiae. This contrasts with the finding that members of the HSP70 family generally show at least 50% amino acid identity. The consensus nucleotide sequence of the heat shock element (HSE) was found in the upstream region of MSI3. Moreover, the steady-state levels of the MSI3 mRNA and protein were increased upon heat shock. These results indicate that the MSI3 gene encodes a novel HSP70-like heat shock protein. Disruption of the MSI3 gene was associated with a temperature sensitive growth phenotype but unexpectedly, thermotolerance was enhanced in the disruptant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Keywords: p34cdc2 ; Oryza sativa ; Protein kinase ; Cell cycle control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Using probes obtained by PCR amplification, we have isolated two cognate rice cDNAs (cdc2Os-1 andcdc2Os-2) encoding structural homologues of thecdc2 +/CDC28(cdc2) protein kinase from a cDNA library prepared from cultured rice cells. Comparison of the deduced amino acid sequences of cdc2Os-1 and cdc2Os-2 showed that they are 83 % identical. They are 62 % identical toCDC28 ofSaccharomyces cerevisiae and much more similar to the yeast and mammalian p34cdc2 kinases than to riceR2, acdc2-related kinase isolated previously by screening the same rice cDNA library with a different oligonucleotide probe. Southern blot analysis indicated that the three rice clones (cdc2Os-1,cdc2Os-2 andR2) are derived from distinct genes and are each found in a single copy per rice haploid genome. RNA blot analysis revealed that these genes are expressed in proliferating rice cells and in young rice seedlings.cdc2Os-1 could complement a temperature-sensitive yeast mutant ofcdc28. However, despite the similarity in structure, bothcdc2Os-2 andR2 were unable to complement the same mutant. Thus, the present results demonstrate the presence of structurally related, but functionally distinct cognates of thecdc2 cell cycle kinase in rice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; ts mutant ; Recovery ; HTR1 ; MCS1/SSD1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new temperature-sensitive mutant of Saccharomyces cerevisiae was isolated. Arrested cells grown at the nonpermissive temperature were of dumb-bell shape and contained large vacuoles. A DNA fragment was cloned based on its ability to complement this temperature sensitivity. The HTR1 gene encodes a putative protein of 93 kDa without significant homology to any known proteins. The gene was mapped between ade5 and lys5 on the left arm of chromosome VII. The phenotype of the gene disruptant appeared to be strain-specific; disruption of the gene in strain W303 caused the cells to become temperature sensitive. The arrested phenotype here was similar to that of the original is mutant and cells in G2/M phase predominated at high temperature. Another disruptant in a strain YPH background grew slowly at high temperature due to slow progression through G2/M phase, and morphologically abnormal (elongated) cells accumulated. A single-copy suppressor that alleviated the temperature-sensitive defects in both strains was identified as MCS1/SSD1. The wild-type strains W303 and YPH are known to carry defective MCS1/SSD1 alleles; hence HTR1 may function redundantly with MCS1/SSD1 to suppress the temperature-sensitive phenotypes. In addition, based on a halo bioassay, the disruptant strains appeared to be defective in recovery from, or adaptive response to G1 arrest mediated by mating pheromone, even at the permissive temperature. Thus the gene has at least two functions and is designated HTR1 (required for high temperature growth and recovery from G1 arrest induced by mating pheromone).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0749-503X
    Keywords: Gene family ; protein with internal repeats ; S. cerevisiae ; heat shock ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We isolated three highly homologous genes, PIR1, PIR2 and PIR3, collectively called the PIR genes. The remarkable feature of their putative amino acid sequence is that they contain a sequence consisting of 18-19 amino acid residues repeated tandemly seven to ten times. Genes homologous to PIR were found in Kluyveromyces lactis and Zygosaccharomyces rouxii but not in Schizosaccharomyces pombe, suggesting that a set of PIR genes plays some role in budding yeast. Bias of codon usage seen in each of the PIR translation products suggests that they are expressed abundantly. The fact that disruption of each gene is viable indicates that none of them is essential. The double disruptants, pir1 pir2, were viable under various conditions, such as higher temperature (37°C) or high salt concentration, but showed a slow-growing phenotype on an agar slab. Furthermore, they were sensitive to heat shock. Addition of a pir3 disruption to the pir1 pir2 double disruptant brought about no phenotypic difference from the original double mutant. PIR1 and PIR3 are closely linked to each other and are on chromosome XI.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 10 (1994), S. 371-376 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; NES24 ; chromosome XIII ; neomycin ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have cloned NES24 using a temperature-sensitive nes24-1 mutant as a host and sequenced a 3162 bp XhoI-EcoRI DNA fragment containing the NES24 gene. Computer analysis revealed that this segment contains a 1806 bp open reading frame which is needed for complementation of the nes24-1 mutation. We found SUP8 in the region upstream of the NES24 gene, placing the NES24 gene on chromosome XIII. A protein homology search indicated that NES24 encodes a new protein. The disruption of the NES24 gene resulted in temperature-sensitive growth. The sequence has been deposited in DDBJ/EmBL/GenBank data bases under Accession Number D15052.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 10 (1994), S. 451-461 
    ISSN: 0749-503X
    Keywords: RAS-cAMP pathway ; CDC25 family ; cell division cycle mutation ; S. cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have identified MS12 as a gene of Saccharomyces cerevisiae which, when on a multicopy vector, suppresses the heat shock sensitivity caused by the loss of the IRA1 product, a negative regulator of the RAS protein. The multicopy MSI2 also suppresses the heat shock sensitivity of cells with the RAS2val19 mutation but not those with the bcy1 mutation, suggesting that the MSI2 protein may interfere with the activity of the RAS protein. The sequence analysis of MSI2 reveals that it is identical to LTE1 belonging to the CDC25 family: CDC25, SCD25 and BUD5, each of which encodes a guanine nucleotide exchange factor for the ras superfamily gene products. Deletion of the entire MSI2 coding region reveals that MSI2 is not essential but the disruptant shows a cold-sensitive phenotype. Under the non-permissive conditions, more than 70% of the msi2 disruptants arrested at telophase as large budded cells with two nuclei divided completely and elongated spindles, indicating that the msi2 deletion is a cell division cycle mutation. These results suggest that MSI2 is involved in the termination of M phase and that this process is regulated by a ras superfamily gene product.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-03-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...