ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Collection
Years
Year
  • 1
    Publication Date: 1993-01-01
    Description: As the greater part of sea-ice area is covered with snow, the thermal regime of sea ice is characterized by the thermal behavior of snow-covered sea ice. In this paper the thermal regime of snow-covered sea ice is quantitatively investigated with a one-dimensional non-linear boundary model which contains: compaction of snow cover; internal absorption of solar radiation; evaporation–condensation within snow cover; equilibrium phase change of brine within sea ice; and vertical oceanic heat flux from seawater to ice. Penetration of air temperature oscillations into the snow-covered sea ice increases remarkably with increasing snow density. As internal melting within the snow-covered sea ice appears with increasing solar radiation, the rise in air temperature and increase of solar radiation in the springtime produce a corresponding change in the thermal state of sea ice, causing a drastic retreat of sea-ice cover. A case study for warm sea ice is presented describing the thermal state during the melting season.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-01-01
    Description: As the greater part of sea-ice area is covered with snow, the thermal regime of sea ice is characterized by the thermal behavior of snow-covered sea ice. In this paper the thermal regime of snow-covered sea ice is quantitatively investigated with a one-dimensional non-linear boundary model which contains: compaction of snow cover; internal absorption of solar radiation; evaporation–condensation within snow cover; equilibrium phase change of brine within sea ice; and vertical oceanic heat flux from seawater to ice. Penetration of air temperature oscillations into the snow-covered sea ice increases remarkably with increasing snow density. As internal melting within the snow-covered sea ice appears with increasing solar radiation, the rise in air temperature and increase of solar radiation in the springtime produce a corresponding change in the thermal state of sea ice, causing a drastic retreat of sea-ice cover. A case study for warm sea ice is presented describing the thermal state during the melting season.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...