ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4889
    Keywords: selective oxidation ; binary alloys ; two-phase alloys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The conditions for the transition from the formation of mixed scales to the exclusive oxidation of the component B, forming the most stable oxide, are examined for both single-phase and two-phase binary A-B alloys by taking into account the displacement of the alloy-scale interface due to the growth of the protective oxide. This procedure eliminates the inconsistencies arising from Wagner's classical treatment for single-phase alloys when the interdiffusion coefficient in the alloy is small with respect to the parabolic rate constant for outer-scale growth; but the same procedure leads to a significantly-improved treatment also for two-phase alloys. For the latter systems, the transition is shown to depend also on the solubility of B in the A-rich phase.Moreover, the exclusive growth of the most-stable oxide is more difficult than for single-phase alloys because it requires higher average concentrations of B in the alloy and may even become impossible if the parabolic rate constant of oxidation is large with respect to the interdiffusion coefficient in the alloy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 38 (1992), S. 465-482 
    ISSN: 1573-4889
    Keywords: niobium ; sulfidation ; defect structure ; hydrogen doping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract An approximate model for the defect structure of the niobium sulfide 2s Nb1+xS2 is developed on the basis of experimental data concerning its deviation from stoichiometry as a function of sulfur pressure. The model involves the presence of doubly-charged metal interstitials and metal vacancies as well as of free electrons and electron holes. The possible effects of hydrogen dissolution on the concentration of the intrinsic defects in this compound are also evaluated for various hydrogen species with an effective charge different from zero, but no final conclusion concerning the existence of an actual doping effect of this compound is reached. The rate constant for the sulfidation of niobium at 950°C is calculated on the basis of this defect structure as a function of the sulfur pressure and is compared with the experimental results concerning the sulfidation of niobium in H2-H2S mixtures. It is concluded that both metal vacancies and metal interstitials contribute significantly to the growth of the sulfide 2s Nb1+xS2
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 39 (1993), S. 197-209 
    ISSN: 1573-4889
    Keywords: oxidation ; binary alloys ; two-phase alloys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of binary, two-phase alloys is considered in which the matrix contains mostly the less-noble metal that forms a fast-growing oxide, while the second phase is rich in a component that forms a more stable but slowly-growing oxide. It is assumed that the second phase exists as a dispersion of isolated, rod-like particles. It is further assumed that both phases form external films with no internal oxidation. It is shown that the oxidation behavior of this type of alloy depends on both the oxidation time and the size of the second-phase particles. In particular, for short oxidation times and large second-phase particles the matrix will oxidize faster than the dispersed phase, so that the dispersed particles will be only partly corroded or even incorporated into the matrix-oxide scale as unoxidized islands, forming an irregular alloy-scale interface. On the contrary, for long times and small particle sizes the two phases will tend to oxidize at approximately the same rate, leading to the formation of regular alloy-scale interfaces. The time for the transition between the two corrosion regimes depends not only on the ratio between the rate constants for the growth of the two oxides but also on the size of the dispersed-phase particles, smaller sizes producing shorter transition times. Eventually, under favorable conditions the formation of the fast-growing oxide may even stop, leading to the formation of a protective layer of the most-stable oxide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4889
    Keywords: internal oxidation ; weight gain ; parabolic rate constants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A calculation of the parabolic rate law for internal oxidation in binary alloys expressed in terms of weight gain shows that its dependence on the concentration of the most-reactive component is different from that predicted by the classical Wagner treatment for the rate constant expressed in terms of thickness of the internal oxidation zone. It is shown that the ratio between the two rate constants for a given system is a very sensitive function of the concentration of the reactive element in the alloy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4889
    Keywords: oxidation kinetics ; protective scales ; binary alloys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract During the growth of the most-stable oxide BO v in the oxidation of binary alloys containing nonnoble components A and B, the oxygen pressure prevailing at the alloy-scale interface is higher than the corresponding value for equilibrium between BO v and pure B. The effects of this change on the rate constant for the growth of BO v and on the critical concentration of B in the bulk alloy required for the stability of BO v on its surface are examined and discussed. The general treatment is then applied to the growth of NiO on Cu−Ni alloys and of Cr2O3 on Fe−Cr, Co−Cr, and Ni−Cr alloys by using appropriate defect models for these oxides, considering also the possibility of oxide doping.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 42 (1994), S. 265-284 
    ISSN: 1573-4889
    Keywords: Ni3Al intermetallic compound ; combustion gas ; hot corrosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of Ni3Al containing small additions of Ti, Zr, and B in combustion gases both with and without Na2SO4−NaCl deposits at 600–800°C has been studied for times up to four days. The corrosion of the saltfree Ni3Al leads to the formation of very thin alumina scales at 600°C but of mixed NiO−Al2O3 scales containing also some sulfur compounds at higher temperatures, while the rate increases with temperature up to 800°C. The presence of the salt deposits considerably accelerates the corrosion rate, especially at 600 and 800°C. The duplex scales formed at 600°C are composed mostly of a mixture of NiO and unreacted salt in the outer layer and of alumina and aluminum sulfide with some nickel compounds in the inner layer. The scales grown at 700°C contain only one layer of complex composition, while those grown at 800°C are similar but have an additional outer layer containing similar amounts of nickel and aluminum. At 600 and 700°C NiSO4 can be detected also in the salt layer. The samples corroded at 700°C and 800°C also show an Al-depleted zone containing titanium sulfide precipitates at the surface of the alloy. The hot corrosion of Ni3Al involves a combination of various mechanisms, including fluxing of the oxide scale as well as mixed oxidation-sulfidation attack. At all temperatures Ni3Al shows poor resistance to hotcorrosion attack as a result of the formation of large amounts of Ni compounds in the scales.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4889
    Keywords: two-phase alloys ; oxidation ; scale structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The main possible modes of the high-temperature corrosion of binary twophase alloys by a single oxidant under gas-phase pressures sufficient to corrode both alloy components are examined to highlight the differences in their behavior with respect to single-phase alloys. It is shown that in the absence of important diffusion processes of the metal components in the alloy the expected scale structures are significantly different from those typical of single-phase alloys. The effects due to the existence of different degrees of deviation from equilibrium as a result of kinetics hindrances for the formation of the most stable oxide and in the absence of alloy diffusion are then examined. It is also shown that when diffusion in the alloy becomes important the alloy may develop an outer single-phase layer depleted in the most-reactive component, which may lead to various possible scale structures. The conditions for the transition between the various oxidation modes as well as the effect of the various parameters of kinetics, thermodynamic and structural nature over the corrosion behavior of two-phase alloys are also examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-4889
    Keywords: Nb-modified Ti3Al ; combustion gas ; hot corrosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of a Nb-modified Ti3Al intermetallic compound containing 11 at.% Nb in a simulated combustion gas with and without deposits of a Na2SO4−NaCl mixture was examined at 600–800°C for times up to four days. In the absence of salt deposits the corrosion rates were rather low and increased only slightly with temperature, producing very thin scales of mixed oxides of Ti, Al, and Nb without sulfides. The presence of the salt deposits produced higher weight gains during an initial stage of one to two days at 600 and 700°C, after which the reaction stopped. A more important and longlasting effect was observed instead at 800°C, when the kinetics of hot corrosion became nearly linear. The scales formed by hot corrosion were complex mixtures of various corrosion products at all temperatures and showed a porous outer region containing a mixture of unreacted salts with oxides (mainly TiO2), an intermediate region of a mixture of variable composition of oxides of the three metals, and a TiO2-rich layer beneath it. At 800°C the scales tended to form a thin, discontinuous Al2O3-rich layer in the middle and contained an additional innermost region presenting a large concentration of sulfur, very likely as Nb and Ti sulfides. The high rate of hot corrosion at 800°C is attributed to the appearance of sulfides in the inner region of the scale and to a more efficient scale fluxing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-4889
    Keywords: binary alloys ; two-phase alloys ; oxidation ; high temperatures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The conditions for the exclusive oxidation of the most-reactive component during the corrosion of binary, two-phase alloys by a single oxidant are reexamined by using a more correct form of the mass balance for this component. Moreover, the previous treatment is extended to include the case in which the transition falls in the range of alloy compositions corresponding to the stability of the single phase rich in the most-reactive component. The limiting conditions for the transition in the single and two-phase fields are examined and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-09-01
    Print ISSN: 0167-2738
    Electronic ISSN: 1872-7689
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...