ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.
    Keywords: QUALITY ASSURANCE AND RELIABILITY
    Type: In: Review of progress in quantitative nondestructive evaluation. Vol. 11A; Proceedings of the 18th Annual Review, Brunswick, ME, July 28-Aug. 2, 1991 (A93-18576 05-38); p. 871-878.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Magnetoacoustic phenomena associated with the use of the magnetoacoustic emission technique for the temper embrittlement characterization of HY-80 steel are investigated in an attempt to explain some peculiarities observed in highly embrittled HY-80 samples. In particular, attention is given to the effects of the ac magnetic field frequency and shape. The peak amplitude of the magnetoacoustic burst, which is directly related to the width of the pulse height distribution, is shown to be a critical parameter in the determination of the degree of temper embrittlement in the steel.
    Keywords: METALLIC MATERIALS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Results of magnetoacoustic emission (MAE) and magnetoacoustic (MAC) measurements performed with an unembrittled HY-80 steel specimen are presented. The MAE measurements were obtained by applying an ac magnetic field of 20 Hz parallel to the uniaxial stress axis. The effects of tensile stress were shown to monotonically decrease the peak amplitude of the MAE burst, and they were consistent with the predicted trend based on the tensile stress-induced domain alignment. The effects of compressive stress were found to increase the peak amplitude of the MAE burst initially and to eventually decrease as the magnitude of compressive stress increased.
    Keywords: METALLIC MATERIALS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Low-frequency resonant model analysis, a technique for the detection and characterization of fatigue cracks in thin metal plates, which could be adapted to rapid scan or large area testing, is considered. Experimental data displaying a direct correlation between fatigue crack geometry and resonance frequency for the second vibrational plate mode are presented. FEM is used to calculate the mechanical behavior of the plates, and provides a comparison basis for the experimentally determined resonance frequency values. The waveform of the acoustic emission generated at the resonant frequency is examined; it provides the basis for a model of the interaction of fatigue crack faces during plate vibration.
    Keywords: STRUCTURAL MECHANICS
    Type: In: Review of progress in quantitative nondestructive evaluation. Vol. 11B; Proceedings of the 18th Annual Review, Brunswick, ME, July 28-Aug. 2, 1991 (A93-19582 06-38); p. 2085-2092.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-05
    Description: Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.
    Keywords: Metals and Metallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles which necessitates automation of the whole process. If the rate of crack growth can be determined the experimenter can vary externally controlled parameters such as load level, load cycle frequency and so on. Hence, knowledge of the precise location of the crack tip at any given time is very valuable. One technique currently available for measuring fatigue crack length is the DC potential drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another approach is to digitize an optical image of the test specimen surface and then apply a pattern recognition technique to locate the crack tip, but this method is still under development. The present work is an initial study on applying eddy current-type probes to monitoring fatigue crack growth. The performance of two types of electromagnetic probes, a conventional eddy current probe and a newly developed self-nulling probe, was evaluated for the detection characteristics at and near the tips of fatigue cracks. The scan results show that the latter probe provides a very well defined local maximum in its output in the crack tip region suggesting the definite possibility of precisely locating the tip, while the former provides a somewhat ambiguous distribution of the sensor output in the same region. The paper is organized as follows: We start by reviewing the design and performance characteristics of the self-nulling probe and then describe the scan results which demonstrate the basic properties of the self-nulling probe. Next, we provide a brief description of the software developed for tracing a simulated crack and give a brief discussion of the main results of the test. The final section summarizes the major accomplishments of the present work and the elements of the future R&D needs.
    Keywords: Metals and Metallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-05
    Description: The effective assessment of the integrity of welds is a complicated NDE problem that continues to be a challenge. To be able to completely characterize a weld, detailed knowledge of its tensile strength, ductility, hardness, microstructure, macrostructure, and chemical composition is needed. NDE techniques which can provide information on any of these features are extremely important. In this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research.
    Keywords: Quality Assurance and Reliability
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: Two types of ferromagnets, pure iron and steel with varying geometry and microstructural properties, were prepared for the present study of magnetoacoustic emission (MAE). The purpose was to separate the effects of structural property variations from changes caused by differences in the sample geometry. The position and shape of the leading MAE sub-burst and its variation among the samples are explained by magnetic anisotropy and the results of numerical simulations which utilized the concept of self-organized criticality (SOC). The amplitude and duration of the second sub-burst, which previously was thought to occur as a result of a complicated interaction between non-180 deg domain walls and lattice defects, can easily be explained by the results of our simulation.
    Keywords: Physics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-05
    Description: In a series of papers Hung pioneered the development of shearography, an optical NDE technique that detects gradients of surface displacements. Its utility for qualitative flaw characterization has been demonstrated, and while there is a need for using shearography in NDE for quantitative analysis, a large amount of the research has concentrated on the qualitative evaluation of structures and materials. The purpose of this paper is to begin building upon a foundation for the newly emerging quantitative shearography. We begin the analysis by considering the approximations leading to the governing shearography equation.
    Keywords: Numerical Analysis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-05
    Description: Our recent study has proved a strong correlation between the low-frequency AC applied magnetic field amplitude dependence of the asymmetry of the magnetoacoustic emission (MAE) burst and the strength of the domain wall-defect interaction in iron-base ferromagnets. For the present study the AC magnetic field frequency dependence of the asymmetry has been investigated in the range of 1 to 200 Hz. When represented by the third moment of the rectified acoustic emission pulses, the asymmetry becomes a bell-shaped function of frequency with its center located around 25 Hz. This experiment has been performed with low carbon, high yield stress steel specimens of three different levels of domain wall-defect interaction strength. The results show that the increase in the interaction strength causes a vertical down shift of the asymmetry in the entire frequency range investigated.
    Keywords: Metals and Metallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...