ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Collection
Years
Year
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The uropathogenic Escherichia coli strain 536 possesses two large, unstable DNA regions on its chromosome, which were termed pathogenicity islands (pais). Deletions of pais, which occur with relatively high frequency in vitro and in vivo, lead to avirulent mutants. The genetic determinants for production of haemolysin (Hly) and P-related fimbriae (Prf) are located in one of these islands. Deletion of this pathogenicity isiand (paill) not only removes the hly- and prf-specific genes, but also represses S fimbriae (Sfa), although the sfa genes of this virulence factor are not located on paill. We have identified two regulatory genes, prfB and prfl, of the prf gene cluster that are homologous to the sfa regulatory genes staB and SfaC, respectively. Mutations in sfaB and sfaC that inhibit transcription of the major fimbrial subunit gene sfaA were complemented by the homologous prf genes, suggesting communication between the two fimbrial gene clusters in the wild-type strain. Chromosomal mutagenesis of the two prf regulators in strain 536 repressed transcription of sfaA, detected by Northern hybridization and a chromosomal sfaA-lacZ fusion. In addition, haemagglutination assays measured a lower level of S fimbriae in these mutants. Expression of the cloned prf regulators in trans reversed the effect of the mutations; furthermore, constitutive expression of prfB or prfl could also overcome the repression of S fimbriae in a strain that had lost the pathogenicity islands. Virulence assays in mice established that the prf mutants were less virulent than the wild-type strain. The results demonstrate that cross-regulation of two unlinked virulence gene clusters together with the co-ordinate loss of large DNA regions significantly influences the virulence of an extraintestinal E. coli wild-type isolate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Gene regulation ; Fimbriae ; Adhesion ; Transcription ; trans-activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The sfa determinant codes for S fimbrial adhesins which constitute adherence factors of pathogenic Escherichia coli strains. We have recently shown that the sfa determinant is transcribed from three promoters, pA, pB, and pC. In comparison with the promoters pB and pC, promoter pA, which is located in front of the structural gene sfaA, showed very weak activity. Here we have determined the exact positions of the mRNA start points by primer extension studies. We have also shown that mRNAs of 500, 700 and 1400 bases can be detected using oligonucleotide probes specific for the genes sfaB, sfaC and sfaA. SfaB and SfaC are positive regulators influencing fimbriation and the production of the S-specific adhesin which is encoded by the gene sfaS located in the distal half of the determinant. In addition, it is demonstrated that SfaB and SfaC interfere with the regulatory effect of the histone-like protein H-NS, encoded by a locus termed drdX or osmZ. In a drdX + strain the regulators are necessary for transcription of the sfa determinant. In contrast, sfa expression is activator-independent in a drdX − strain. In this latter genetic background, a substantial fraction of the sfa transcripts is initiated from promoter pA. On the basis of these data we discuss a model for the regulation of this adhesin-specific determinant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...