ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The role of the vitamin K dependent proteins, osteocalcin which is bone specific and matrix Gla protein (MGP) found in many tissues, has been studied by inhibition of synthesis of their characteristic amino acid, γ-carboxyglutamic acid (Gla) with the anticoagulant sodium warfarin. The effect of sodium warfarin on expression of these proteins, and other phenotypic markers of bone and cartilage during cellular differentiation and development of tissue extracellular matrix, was examined in several model systems. Parameters assayed include cell growth (reflected by histone gene expression) and collagen types I and II, osteopontin, alkaline phosphatase, and mineralization. Studies were carried out in calvarial bone organ cultures, normal diploid rat osteoblast and chondrocyte cultures, and rat osteosarcoma cell lines ROS 17/2.8 and 25/1. In normal diploid cells, warfarin consistently stimulated cell proliferation (twofold). In osteoblast cultures, MGP mRNA levels were generally increased (three to tenfold). Notably, MGP mRNA levels were not affected in chondrocyte cultures, either with chronic or acute warfarin treatments. Osteocalcin mRNA levels and synthesis were decreased up to 50% in ROS 17/2.8 cells and in chronically treated (1 and 5 μg/ml sodium warfarin) rat osteoblast cultures after 22 days. Early stages of osteoblast phenotype development from the proliferation period to initial tissue formation (nodules) appeared unaffected; while after day 14, further growth and mineralization of the nodule areas were significantly decreased in warfarin-treated cultures. In summary, warfarin has opposing effects on the expression of two vitamin K dependent proteins, MGP and osteocalcin, in osteoblast cultures and MGP is regulated differently between cartilage and bone as reflected by cellular mRNA levels. Additionally, warfarin effects expression of nonvitamin K dependent proteins which may reflect the influence of warfarin on endoplasmic reticulum associated enzymes. © 1994 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This study examines the mechanism by which TGF-β1, an important mediator of cell growth and differentiation, blocks the differentiation of normal rat diploid fetal osteoblasts in vitro. We have established that the inability for pre-osteoblasts to differentiate is associated with changes in the expression of cell growth, matrix forming, and bone related genes. These include histone, jun B, c-fos, collagen, fibronectin, osteocalcin, alkaline phosphatase, and osteopontin. Morphologically, the TGF-β1-treated osteoblasts exhibit an elongated, spread shape as opposed to the characteristic cuboidal appearance during the early stages of growth. This is followed by a decrease in the number of bone nodules formed and the amount of calcium deposition. These effects on differentiation can occur without dramatic changes in cell growth if TGF-β1 is given for a short time early in the proliferative phase. However, continuous exposure to TGF-β1 leads to a bifunctional growth response from a negative effect during the proliferative phase to a positive growth effect during the later matrix maturation and mineralization phases of the osteoblast developmental sequence. Extracellular matrix genes, fibronectin, osteopontin and α1(I) collagen, are altered in their expression pattern which may provide an aberrant matrix environment for mineralization and osteoblast maturation and potentiate the TGF-β1 response throughout the course of osteoblast differentiation. The initiation of a TGF-β1 effect on cell growth and differentiation is restricted to the proliferative phase of the culture before the cells express the mature osteoblastic phenotype. Second passage cells that are accelerated to differentiate by the addition of dexamethasone or by seeding cultures at a high density are refractory to TGF-β1. These in vitro results indicate that TGF-β1 exerts irreversible effects at a specific stage of osteoblast phenotype development resulting in a potent inhibition of osteoblast differentiation at concentrations from 0.1 ng/ml. © 1994 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cell cycle and growth control of the DNA binding and transactivation functions of regulatory factors provides a direct mechanism by which cells may coordinate transcription of a multitude of genes in proliferating cells. The promoters of human DNA replication dependent histone H4, H3, and H1 genes interact with at least seven distinct proteins. One of these proteins is a proliferation-specific nuclear factor, HiNF-D, that interacts with a key cis-regulatory element (H4-Site II; 41 bp) present in H4 genes. Here we describe binding sites for HiNF-D in the promoters of H3 and H1 genes using cross-competition, deletion analysis, and methylation interference assays, and we show that HiNF-D recognizes intricate arrangements of at least two sequence elements (CA- and AG-motifs). These recognition motifs are irregularly dispersed and distantly positioned in the proximal promoters (200 bp) of both the H3 and H1 genes. In all cases, these motifs either overlap or are in close proximity to other established transcriptional elements, including ATF and CCAAT sequences. Although HiNF-D can interact with low affinity to a core recognition domain, auxiliary elements in both the distal and proximal portions of each promoter cooperatively enhance HiNF-D binding. Thus, HiNF-D appears to bridge remote regulatory regions, which may juxtapose additional trans-activating proteins interacting within histone gene promoters. Consistent with observations in many cell culture systems, the interactions of HiNF-D with the H4, H3, and H1 promoters are modulated in parallel during the cessation of proliferation in both osteosarcoma cells and normal diploid osteoblasts, and these events occur in conjunction with concerted changes in histone gene expression. Thus, HiNF-D represents a candidate participant in coordinating transcriptional control of several histone gene classes. © 1994 wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 247-265 
    ISSN: 0197-8462
    Keywords: proliferation ; differentiation ; cell phenotype ; tissue culture ; molecular biology ; cell biology ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The potential biological effects of electric and/or magnetic fields on cells and tissues must be addressed systematically within a context of perturbations in cell cycle control. Such studies should not be pursued in an isolated manner but as a component of the fundamental relationship between proliferation and differentiation, the multi-step process by which structural and functional properties of specialized cells, tissues, and organs progressively develop. It is necessary to quantitatively establish the influence of electric and magnetic fields on the integrated signalling mechanisms which transduce regulatory information for 1) control of the proliferative process and 2) down-regulation of proliferation associated with the initiation of gene expression that mediates the development and maintenance of phenotypic properties characteristic of differentiated cells. We will present an overview of our current understanding of regulatory mechanisms that control proliferation and cell specialization in normal diploid cells with emphasis on rate limiting steps that may be the basis for biological perturbations by electric and magnetic fields. Addressing such questions in normal diploid cells is essential since the loss of growth control in transformed and tumor cells is accompanied by an abrogation of developmental regulatory mechanisms that are functionally coupled to proliferation. 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0730-2312
    Keywords: TGFβ ; extracellular matrix ; slot blot analysis ; DBP ; RNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Subcutaneous implatation of demineralized bone particles (DBP) into rats induces the formation of a bone ossicle by a tightly controlled sequence of chondro- and osteo-inductive events which are directly comparable to those which occur in normal endochondral bone development. Although the morphological and biochemical sequence associated with endochondral bone formation in this model has been well characterized, to date little information is available as to the gene regulation by which these events occur. To examine the expression of genes in this system, RNA was isolated from implants every 2 days over a time course spanning 3 to 19 days after implantation of DBP into rats. Cellular levels of mRNA transcripts of cell-growth-regulated and tissue-specific genes were examined by slot blot analysis and compared to the morphological changes occuring during formation of the ossicle. Analysis of the mRNA levels of histone H4 and c-myc, markers of proliferative activity, revealed several periods of actively proliferating cells, corresponding to (1) production of fibroprogenitor cells (day 3), (2) onset of bone formation (day 9), and (3) formation of bone marrow (day 19). The mRNA levels of collagen type II, a phenotypic marker of cartilage, peaked between days 7 and 9 post-implantation, corresponding to the appearance of chondrocytes in the implant, and rapidly declined on day 11 (to 5% of maximum value) when bone formation was observed. The peak mRNA levels of collagen type I, found in fibroblasts and osteoblasts, occurred first with the onset of bone formation (days 7-10) and again during formation of bone marrow (day 19). This study has demonstrated that the temporal patterns of mRNA expression of cartilage type II and bone type I collagens coincide with the morphological sequence in this model of endochondral bone formation. Further, the mRNA levels of transforming growth factor β1 (TGFβ) were compared to those of collagen types I and II; a direct temporal correlation of TGFβ mRNA levels with that of collagen type I was found throughout the developmental time course. This observation of a tightly coupled relationship between TGFβ and type I collagen mRNA levels is consistent with a functional role for TGFβ in extracellular matrix production during in vivo bone formation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 47 (1991), S. 184-196 
    ISSN: 0730-2312
    Keywords: glucocorticoid ; transcription ; mRNA stability ; histone ; differentiation ; bone development ; osteoblast ; promoter factors ; collagen ; osteosarcoma cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The influence of dexamethasone on expression of the osteocalcin gene which encodes the most abundant non-collagenous and only reported bone-specific protein was examined in ROS 17/2.8 osteosarcoma cells which express a broad spectrum of genes related to bone formation. Consistent with previous reports, quantitation of cellular osteocalcin mRNA levels by Northern blot analysis, osteocalcin gene transcription by activity of the osteocalcin gene promoter fused to a chloramphenicol acetyl-transferase (CAT) mRNA coding sequence following transfection into ROS 17/2.8 cells, and osteocalcin biosynthesis by radioimmunoassay indicate that dexamethasone in a concentration range of 10-6 to 10-9 M only modestly modifies basal levels of osteocalcin gene expression. However, dexamethasone significantly inhibits these parameters of the vitamin D-induced upregulation of osteocalcin gene expression in both proliferating and in confluent ROS 17/2.8 cells. In this study, we observed that the extent to which abrogation of the vitamin D response occurs is dependent on basal levels of osteocalcin gene expression as reflected by a complete inhibition of the vitamin D-induced upregulation in a ROS 17/2.8K subline with low basal expression and only a partial reduction of the vitamin D stimulation in a ROS 17/2.8C subline with eightfold higher levels of basal expression. This effect of glucocorticoid appears to be at the transcriptional and post-transcriptional levels as demonstrated by a parallel decline in the cellular representation of osteocalcin mRNA, osteocalcin gene promoter activity, and osteocalcin biosynthesis. The complexity of the glucocorticoid effect on vitamin D-mediated transcriptional properties of the osteocalcin gene is indicated by persistence of sequence-specific protein-DNA interactions at two principal osteocalcin gene promoter regulatory elements, the osteocalcin (CCAAT) box which modulates basal level of transcription, and the vitamin D responsive element, where vitamin D-mediated enhancement of osteocalcin gene transcription is controlled.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: osteocalcin ; osteopontin ; collagen ; c-fos ; oncogene ; histone ; fibronectin ; alkaline phosphatase ; collagenase ; steroid hormone ; growth control ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10 -7 M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGFβ was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assay to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the vitamin D3 effect on gene expression. Those genes which are upregulated by 1,25(OH)2D3 are transcribed at an increased rate by dexamethasone, while those genes which are inhibited by vitamin D3 remain inhibited in the presence of dexamethasone and D3. We propose that the glucocorticoid promote changes in gene expression involved in cell-cell and cell-extracellular matrix signaling mechanism that support the growth and differentiation of cells capable of osteoblast phenotype development and bone tissue-like organization, while inhibiting the growth of cells that cannot progress to the mature osteoblast phenotype in fetal rat calvarial cultures. © 1992 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...