ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.
    Keywords: ASTRONOMY
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 287; 1; p. 279-289
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The presence of two or more landed or orbiting spacecraft at a planet provides the opportunity to perform extremely accurate Earth-based navigation by simultaneously acquiring Doppler data and either Same-Beam Interferometry (SBI) or ranging data. Covariance analyses were performed to investigate the accuracy with which lander and rover positions on the surface of Mars can be determined. Simultaneous acquisition of Doppler and ranging data from a lander and rover over two or more days enables determination of all components of their relative position to under 20 m. Acquiring one hour of Doppler and SBI enables three dimensional lander-rover relative position determination to better than 5 m. Twelve hours of Doppler and either SBI or ranging from a lander and a low circular or half synchronous circular Mars orbiter makes possible lander absolute position determination to tens of meters.
    Keywords: AIRCRAFT COMMUNICATIONS AND NAVIGATION
    Type: The Telecommunications and Data Acquisition Report; p 279-293
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-04
    Description: The development of space geodetic techniques over the past two decades has made it possible to measure the rotational dynamics of the Earth at the milliarcsecond level, improving our geophysical models of the Earth 's interior and the interactions between the solid Earth and its atmosphere. We have found that the rotational dynamics of Mars can be determined to nearly the same level of accuracy by acquiring Earth-based two-way radio tracking observations of three or more landers globally distributed on the surface of Mars. Our results indicate that the precession and long-term obliquity changes of the Mars pole direction can be determined to an angular accuracy corresponding to about 15 cm/yr at the planet's surface. In addition, periodic nutations of the pole and seasonal variations in the spin rate of the planet can be determined to 10 cm or less. Measuring the rotation of Mars at this accuracy would greatly improve the determination of the planet' s moment of inertia and would resolve the size of a planetary fluid core, providing a valuable constraint on Mars interior models. Detecting seasonal variations in the spin rate of Mars would provide global constraints on atmospheric angular momentum changes due to sublimation of the Mars CO2 polar ice caps. Finally, observation of quasisecular changes in Mars obliquity would have significant implications for understanding long-term climatic change. The key to achieving these accuracies is a globally distributed network of Mars landers with stable, phase-coherent radio transponders. By simultaneously acquiring coherent two-way carrier phase observations between a single Earth tracking station and multiple Mars landers, Earth media errors are essentially eliminated, providing an extremely sensitive measure of changes in the differential path lengths between the Earth tracking station and the Mars landers due to Mars rotation. Time variability of the instrumental phase delay through the radio transponder may represent the limiting error source for this technique. Calibration of the transponder stability to about 0.1 ns or less, over a single tracking arc of up to 12 hr, is sufficient to provide the decimeter-level determination of Mars orientation parameters quoted above. We will provide a detailed description of the multilander tracking technique and the requirements it imposes on both the lander radio system and the Earth-based ground-tracking system. This concept is currently part of the strawman science plan for the Mars Environmental Survey (MESUR) mission and complements many of the other MESUR science goals.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Workshop on Advanced Technologies for Planetary Instruments, Part 1; p 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-25
    Description: Radio metric tracking data acquired from the Ulysses spacecraft about its encounter with Jupiter in February 1992 allow an accurate measurement of some components of the orbital elements describing the positions of the Earth and Jupiter with respect to extragalactic radio sources. Range and Doppler data acquired from the Earth while the spacecraft is far from any planet provide an estimate of the spacecraft trajectory relative to the orbit of the Earth. Doppler data near Jupiter provide an accurate position determination of the spacecraft with respect to Jupiter. Very Long Baseline Interferometry observations of the spacecraft with respect to the distant radio sources provide a direct measure of the spacecraft position in the radio reference frame. Combining these measurements provides a means to estimate the locations of the Earth and Jupiter in the radio reference frame. One of the three Euler angles describing the orientation of the Earth's orbit in the radio frame has been determined to an accuracy of 50 nanoradians; the result agrees with other recent determinations of this orientation. The position of Jupiter at the time of Ulysses encounter has been determined to 15 nanoradians in ecliptic latitude and longitude.
    Keywords: ASTRODYNAMICS
    Type: In: Spaceflight mechanics, 1993; AAS(AIAA Spaceflight Mechanics Meeting, 3rd, Pasadena, CA, Feb. 22-24, 1993, Parts 1 & 2 . A95-81344 (ISSN 0065-3438); p. 1051-1059
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: The radio metric tracking technique known as Same-Beam Interferometry (SBI) has been shown to improve orbit determination accuracy for the Magellan and Pioneer 12 orbiter. Previous efforts to explore the technique were carried out by making open loop recordings of the carrier signals from the two spacecraft and extracting their phases through post processing. This paper reports on the use of a closed loop receiver to simultaneously measure the carrier signals from two spacecraft in order to produce SBI data in near real time. The Experiment Tone Tracker is a digital closed loop receiver installed in two of NASA's Deep Space Network stations which can simultaneously extract the phase of up to eight tones. The receivers were used in late September and October of 1992 to collect Doppler and SBI data from Pioneer 12 and Magellan. The demise of the Pionner 12 on October 8th during the start-up phase of our tests precluded the collection of an extensive set of SBI data, however two passes of SBI and several arcs of single spacecraft Doppler data were recorded. The SBI data were analyzed and determined to have statistical errors consistent with error models and similar to open loop data.
    Keywords: ASTRODYNAMICS
    Type: In: Spaceflight mechanics, 1993; AAS(AIAA Spaceflight Mechanics Meeting, 3rd, Pasadena, CA, Feb. 22-24, 1993, Parts 1 & 2 . A95-81344 (ISSN 0065-3438); p. 1061-1070
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Description: The interplanetary orbits of three pairs of spaceprobes carrying laser interferometer antennae are designed such that their miutual distances, i.e., the lengths of the interferometer arms remain nearly constant. The pairs move relative to each other in an equilateral triangle.
    Keywords: Communications and Radar
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The effect of very long baseline interferometry (VLBI) measurements of 2-nanoradian (nrad) accuracy has been studied for use in Galileo's approach to Jupiter's moon Io. Of particular interest is reducing the error in the minimum altitude above Io's surface. The nominal tracking strategy includes Doppler, range, and onboard optical data, in addition to VLBI data with 25-nrad accuracy. For nominal data, the altitude error is approximately 250 km with a data cutoff of 19 days before closest approach to Io. A limited number (two to four) of 2-nrad VLBI measurements, simulating a demonstration of improved VLBI data, were found to reduce the altitude error by 10 to 40 percent. Improving the accuracy of the VLBI measurements of the nominal tracking strategy to 2 nrads, to simulate the results from an operational few-nrad VLBI capability, was found to reduce the altitude error by an approximate factor of four. This reduction in altitude error is attributed to the ability that VLBI data give to help determine the along-track component of Jupiter's ephemeris. This capability complements the ability of the onboard optical data to determine the radial and cross-track components of Jupiter's ephemeris.
    Keywords: COMMUNICATIONS AND RADAR
    Type: The Telecommunications and Data Acquisition Report; p 34-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit.
    Keywords: OPTICS
    Type: The Telecommunications and Data Acquisition Report; p 121-135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Simultaneous tracking of two spacecraft in orbit about a distant planet by two widely separated Earth-based radio antennas provides more-accurate positioning information than can be obtained by tracking each spacecraft separately. A demonstration of this tracking technique, referred to as same-beam interferometry (SBI), is currently being done using the Magellan and Pioneer 12 orbiters at Venus. Signals from both spacecraft fall within the same beamwidth of the Deep Space Station antennas. The plane-of-sky position difference between spacecraft is precisely determined by doubly differenced phase measurements. This radio metric measurement naturally complements line-of-sight Doppler. Data was first collected from Magellan and Pioneer 12 on August 11-12, 1990, shortly after Magellan was inserted into Venus orbit. Data were subsequently acquired in February and April 1991, providing a total of 34 hours of same-beam radio metric observables. Same-beam radio metric residuals have been analyzed and compared with model measurement error predictions. The predicted error is dominated by solar plasma fluctuations. The rms of the residuals is less than predicted by about 25 percent for 5-min averages. The shape of the spectrum computed from residuals is consistent with that derived from a model of solar plasma fluctuations. This data type can greatly aid navigation of a second spacecraft when the first is well-known in its orbit.
    Keywords: ASTRODYNAMICS
    Type: The Telecommunications and Data Acquisition; p 1-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...