ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 87 (1993), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The schizogenous intercellular spaces (i. e. those small spaces formed by cell walls coming apart) in the cortex of the roots of field-grown maize (Zea mays L.) were studied in planed transverse faces of frozen tissue, very lightly etched and coated with Al. The spaces were mostly filled with either fluid or, in the drier roots, with a flaky deposit. This deposit may have been left behind when water was withdrawn, or may have been debris dislodged by the planing. Even in roots with mostly dry spaces, some wet, fluid-filled spaces remained. X-ray microanalysis of the wet spaces revealed that the fluid contained K (average concentration 230 mM, range 50–750 mM) and Ca (average concentration 100 mM, range 15 to 550 mM), and occasionally small amounts of S, P or Cl. No other balancing inorganic anions were detected. Concentrations in the wet intercellular spaces showed considerable variation between one space and the next, and were often quite different from those in the vacuoles of adjacent cells. However, overall the vacuoles of the cells surrounding the spaces showed mean concentrations, and distributions of concentrations, indistinguishable from those of the wet spaces. Analyses of the deposits in the dry spaces were less reliable because of their uneven surface, but the same ions in about the same amounts were found there. The contents of the spaces showed no correlation with either the time of collection of the roots, or with distance from the root tip. Nor was there any change in concentration of these ions in the spaces when the roots were grown for 19 h in distilled water mist. Experiments and evidence are presented suggesting that the observed distribution of ions is probably not an artefact. Pilot experiments showed similar distributions of extracellular ions in roots of barley, Sudan grass and soybean
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 82 (1991), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The long delayed maturation of the late metaxylem of maize (Zea mays) roots imposes a high-resistance barrier between the immature apices and the negative water potential of the leaves. These apices (20+ cm) bear strongly adhering soil sheaths to within 0.5 to 2 cm of the distal end. It was hypothesized that the sheathed immature apices should show less response to transpiration stress than bare regions. Measurements were made of the relative water content (RWC) of the sheathed and bare zones of the axile roots, both at different ages of the plant, and early and late in the day's transpiration. Sheathed roots maintained a steady RWC of about 83% irrespective of age or transpiration. Bare roots had RWCs of about 63% in the morning, but this fell to 55% in the afternoon. The first-order branches on the bare roots in the morning had still lower values of RWC, near 50%. Plots of RWC against water potential were indistinguishable for the three root types. It is concluded that the immature apices are indeed relatively isolated from the fluctuating tensions in the stem xylem, and that these tensions reduce the water content of bare roots and their branches to low values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 83 (1991), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The rapid flow of the transpiration stream through major veins to leaf teeth was followed in leaves of Populus balsamifera L., using the tracer sulphorhodamine G (SR), which probes for cells with H+-extrusion pumps. The tracer accumulated quickly in the hydathodes of the teeth. It was shown by freeze-substitution and anhydrous processing that SR was taken up by phloem parenchyma and epithem cells of the hydathode. When 14C-labelled aspartate was fed to the leaves in the transpiration stream, it also was taken up most strongly by the same phloem parenchyma and epithem cells. It is proposed that one function of the hydathodes in leaf teeth is the retrieval of solutes from the transpiration stream.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 155 (1990), S. 144-152 
    ISSN: 1615-6102
    Keywords: Motile vacuoles ; Vesiculation ; Mathematical model ; Fixation ; Osmotic conditions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plant cells possess an extensive motile vacuolar system (MVS) easily observed with dark field, Nomarski or phase contrast optics. The elements of the MVS are long cylindrical vacuoles, 1–6 μm in diameter, but are transformed into spherical vesicle upon fixation with non-coagulant fixatives (e.g., glutaraldehyde). A mathematical model is developed to describe the vesiculation event, taking into account osmotic properties of the fixing solution. A computer simulation is prepared, using the model equations, to examine response of vesicle radius and number under weak to strong osmotic conditions. Vesicle radius is strictly dependent upon initial vacuolar radius, while vesicle number is found to depend upon initial vacuole length as well as radius. However, vesicle number is more dependent upon initial vacuolar radius as osmotic influences increase. The model points out important basic properties of membrane cylinders and spheres that can be scaled up or down to include similar structures at various magnitudes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...