ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 87 (1994), S. 657-667 
    ISSN: 1432-2242
    Keywords: Transposable elements ; Mutation ; Evolution ; DNA repair ; Gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mobile DNAs of the Mutator system of maize (Zea mays) are exceptional both in structure and diversity. So far, six subfamilies of Mu elements have been discovered; all Mu elements share highly conserved terminal inverted repeats (TIRs), but each sub-family is defined by internal sequences that are apparently unrelated to the internal sequences of any other Mu subfamily. The Mu1/Mu2 subfamily of elements was created by the acquisition of a portion of a standard maize gene (termed MRS-A) within two Mu TIRs. Beside the unusually long (185–359 bp) and diverse TIRs found on all of these elements, other direct and inverted repeats are often found either within the central portion of a Mu element or within a TIR. Our computer analyses have shown that sequence duplications (mostly short direct repeats interrupted by a few base pairs) are common in non-autonomous members of the Mutator, Ac/Ds, and Spm(En) systems. These duplications are often tightly associated with the element-internal end of the TIRs. Comparisons of Mu element sequences have indicated that they share more terminal components than previously reported; all subfamilies have at least the most terminal 215 bp, at one end or the other, of the 359-bp Mu5 TIR. These data suggest that many Mu element subfamilies were generated from a parental element that had termini like those of Mu5. With the Mu5 TIRs as a standard, it was possible to determine that elements like Mu4 could have had their unusual TIRs created through a three-step process involving (1) addition of sequences to interrupt one TIR, (2) formation of a stem-loop structure by one strand of the element, and (3) a subsequent DNA repair/gene conversion event that duplicated the insertion(s) within the other TIR. A similar repair/conversion extending from a TIR stem into loop DNA could explain the additional inverted repeat sequences added to the internal ends of the Mu4 and Mu7 TIRs. This same basic mechanism was found to be capable of generating new Mu element subfamilies. After endonucleolytic attack of the loop within the stem-loop structure, repair/conversion of the gap could occur as an intermolecular event to generate novel internal sequences and, therefore, a new Mu element subfamily. Evidence supporting and expanding this model of new Mu element subfamily creation was identified in the sequence of MRS-A.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 86 (1993), S. 598-604 
    ISSN: 1432-2242
    Keywords: Maize-Sorghum-Restriction fragment length polymorphism ; Genetic maps ; Inversion ; Translocation ; Duplication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cloned maize genes and random maize genomic fragments were used to construct a genetic map of sorghum and to compare the structure of the maize and sorghum genomes. Most (266/280) of the maize DNA fragments hybridized to sorghum DNA and 145 of them detected polymorphisms. The segregation of 111 markers was analyzed in 55 F2 progeny. A genetic map was generated with 96 loci arranged in 15 linkage groups spanning 709 map units. Comparative genetic mapping of sorghum and maize is complicated by the fact that many loci are duplicated, often making the identification of orthologous sequences ambiguous. Relative map positions of probes which detect only a single locus in both species indicated that multiple rearrangements have occurred since their divergence, but that many chromosomal segments have conserved synteny. Some sorghum linkage groups were found to be composed of sequences that detect loci on two different maize chromosomes. The two maize chromosomes to which these loci mapped were generally those which commonly share duplicated sequences. Evolutionary models and implications are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 239 (1993), S. 115-121 
    ISSN: 1617-4623
    Keywords: RFLP ; Disease resistance ; Duplicated sequence ; Recombination ; Linked repeats ; Hypervariable loci
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rp1 is a disease resistance complex and is the terminal morphological marker on the short arm of maize chromosome 10. Several restriction fragment length polymorphisms (RFLPs), which map within 5 map units of Rp1, were examined to determine if they are also complex in structure. Two RFLP loci, which mapped distally to Rp1, BNL3.04 and PIO200075, existed in a single copy in all maize lines examined. These two loci cosegregated perfectly in 130 test cross progeny. Two RFLP loci that map proximally to Rp1 had unusual structures, which have not yet been reported for maize RFLPs; the loci were complex, with variable numbers of copies in different maize lines. One of the loci, NPI285, occasionally recombined in meiosis to yield changes in the number of copies of sequences homologous to the probe. The other proximal locus, detected by the probes NPI422, KSU3, and KSU4, was relatively stable in meiosis and no changes in the number of restriction fragments were observed. The similarity in map position between Rp1 and the complex RFLP loci indicate there may be genomic areas where variable numbers of repeated sequences are common. The structure of these complex loci may provide insight into the structure and evolution of Rp1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-06-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-02-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...