ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Earthquake Engng. Struct. Dyn., Basel, Inst. f. Geophys., Ruhr-Univ. Bochum, vol. 22, no. 2, pp. 279-295, pp. 1009, (ISSN: 1340-4202)
    Publication Date: 1993
    Keywords: Boundary Element Method ; Site amplification ; Modelling ; Body waves ; P-waves ; Shear waves ; Rayleigh waves ; Surface waves ; BSSA ; Sanchez ; EESD ; SRICHWALSKI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Bull. Seism. Soc. Am., Basle, Wiley, vol. 84, no. 1, pp. 1169-1183, pp. 1264, (ISSN: 1340-4202)
    Publication Date: 1994
    Keywords: Three dimensional ; Scattering ; Seismology ; Two-dimensional ; BSSA ; Sanchez
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until this condition for the error calibration is satisfied. In addition, gravity field tests were performed on strong satellite data sets withheld from the solution (thereby ensuring their independence). In these tests, the performance of the subset models on the withheld observations is compared to error projections based on their calibrated error covariances. These results demonstrate that orbit accuracy projections are reliable for new satellites which were not included in GEM-T3.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B2; p. 2815-2839
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-06-13
    Description: A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.
    Keywords: COMMUNICATIONS AND RADAR
    Type: The Telecommunications and Data Acquisition Report; p 380-397
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-06-13
    Description: The investigation's main goals are to produce accurate tidal maps of the main diurnal, semidiurnal, and long-period tidal components in the world's deep oceans. This will be done by the application of statistical estimation techniques to long time series of altimeter data provided by the TOPEX/POSEIDON mission, with additional information provided by satellite tracking data. In the prelaunch phase, we will use in our simulations and preliminary work data supplied by previous oceanographic missions, such as Seasat and Geosat. These results will be of scientific interest in themselves. The investigation will also be concerned with the estimation of new values, and their uncertainties, for tidal currents and for the physical parameters appearing in the Laplace tidal equations, such as bottom friction coefficients and eddy viscosity coefficients. This will be done by incorporating the altimetry-derived charts of vertical tides as boundary conditions in the integration of those equations. The methodology of the tidal representation will include the use of appropriate series expansions such as ocean-basin normal modes and spherical harmonics. The results of the investigation will be space-determined tidal models of coverage and accuracy superior to that of the present numerical models of the ocean tides, with the concomitant benefits to oceanography and associated disciplinary fields.
    Keywords: OCEANOGRAPHY
    Type: JPL, TOPEX(Poseidon Science Investigations Plan; p 121-125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: The GEM-T2 is the latest in a series of Goddard Earth Models of the terrestrial field. It was designed to bring modeling capabilities one step closer towards ultimately determining the TOPEX/Poseidon satellite's radial position to an accuracy of 10-cm RMS (root mean square). It also improves models of the long wavelength geoid to support many oceanographic and geophysical applications. The GEM-T2 extends the spherical harmonic field to include more than 600 coefficients above degree 36 (which was the limit for its predecessor, GEM-T1). Like GEM-T1, it was produced entirely from satellite tracking data, but it now uses nearly twice as many satellites (31 vs. 17), contains four times the number of observations (2.4 million), has twice the number of data arcs (1132), and utilizes precise laser tracking from 11 satellites. The estimation technique for the solution has been augmented to include an optimum data weighting procedure with automatic error calibration for the gravitational parameters. Results for the GEM-T2 error calibration indicate significant improvement over previous satellite-only models. The error of commission in determining the geoid has been reduced from 155 cm in GEM-T1 to 105 cm for GEM-T2 for the 36 x 36 portion of the field, and 141 cm for the entire model. The orbital accuracies achieved using GEM-T2 are likewise improved. Also, the projected radial error on the TOPEX satellite orbit indicates 9.4 cm RMS for GEM-T2, compared to 24.1 cm for GEM-T1.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 22043-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.
    Keywords: OPTICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Part 4: Second Post-Retrieval Symposium; p 1425-1437
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: MPD work at MIT is presented in the form of the view-graphs. The following subject areas are covered: the MIT program, its goals, achievements, and roadblocks; quasi one-dimensional modeling; two-dimensional modeling - transport effects and Hall effect; microscopic instabilities in MPD flows and modified two stream instability; electrothermal stability theory; separation of onset and anode depletion; exit plane spectroscopic measurements; phenomena of onset as performance limiter; explanations of onset; geometry effects on onset; onset at full ionization and its consequences; relationship to anode depletion; summary on self-field MPD; applied field MPD - the logical growth path; the case for AF; the challenges of AF MPD; and recommendations.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center, Magnetoplasmadynamic Thruster Workshop; 17 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: A theoretical and experimental investigation of the aerodynamic forces generated by a single gland labyrinth seal executing a simultaneous spinning/whirling motion has been conducted. A lumped parameter model for a single gland seal with coupling to an upstream cavity with leakage is developed along with an appropriate solution technique. From this theory, it is shown that the presence of the upstream cavity can, in some cases, augment the cross-stiffness and direct damping by a factor of four. The parameters that govern the coupling are presented along with predictions on their influence. A simple uncoupled model is used to identify the mechanisms responsible for cross force generation. This reduced system is nondimensionalized and the physical significance of the reduced parameters is discussed. Closed form algebraic formulas are given for some simple limiting cases. It is also shown that the total cross-force predicted by the uncoupled model can be represented as the sum of an ideal component due to an inviscid flow with entry swirl and a viscous part due to the change in swirl created by friction inside the gland. The frequency dependent ideal part is solely responsible for the rotordynamic direct damping. The facility designed and built to measure these frequency dependent forces is described. Experimental data confirm the validity and usefulness of this ideal/viscous decomposition. A method for calculating the damping coefficients based on the force decomposition using only the static measurements is presented. Experimental results supporting the predicted cross force augmentation due to the effect of upstream coupling are presented.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA. Lewis Research Center, Rotordynamic Instability Problems in High-Performance Turbomachinery, 1993; p 179-207
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-29
    Description: A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.
    Keywords: OPTICS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. First Post-Retrieval Symposium, Part 3; p 1257-1282
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...