ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • 1990-1994  (9)
  • 1980-1984  (3)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-06-28
    Description: The viscous, three-dimensional, flowfields of UH60 and BERP rotors are calculated for lifting hover configurations using a Navier-Stokes computational fluid dynamics method with a view to understand the importance of planform effects on the airloads. In this method, the induced effects of the wake, including the interaction of tip vortices with successive blades, are captured as a part of the overall flowfield solution without prescribing any wake models. Numerical results in the form of surface pressures, hover performance parameters, surface skin friction and tip vortex patterns, and vortex wake trajectory are presented at two thrust conditions for UH60 and BERP rotors. Comparison of results for the UH60 model rotor show good agreement with experiments at moderate thrust conditions. Comparison of results with equivalent rectangular UH60 blade and BERP blade indicates that the BERP blade, with an unconventional planform, gives more thrust at the cost of more power and a reduced figure of merit. The high thrust conditions considered produce severe shock-induced flow separation for UH60 blade, while the BERP blade develops more thrust and minimal separation. The BERP blade produces a tighter tip vortex structure compared with the UH60 blade. These results and the discussion presented bring out the similarities and differences between the two rotors.
    Keywords: AERODYNAMICS
    Type: In: AHS and Royal Aeronautical Society, Technical Specialists' Meeting on Rotorcraft Acoustics(Fluid Dynamics, Philadelphia, PA, Oct. 15-17, 1991, Proceedings (A93-29401 10-71); 18 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.
    Keywords: AERODYNAMICS
    Type: PAPER C15 , ; 12 p.|Sep 14, 1993 - Sep 16, 1993; Como; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Unsteady flowfields of a two-dimensional oscillating wing are calculated using an implicit, finite-difference, Navier-Stokes numerical scheme using five widely used turbulence models. The objective of this study is to identify an appropriate turbulence model for accurate simulation of three-dimensional dynamic stall. Three unsteady flow conditions corresponding to attached flow, light-stall, and deep-stall of an oscillating wing experiment were chosen as test cases for computations. Results of unsteady airload hysteresis curves, harmonics of unsteady pressures, and instantaneous flow pictures are presented. Comparison of unsteady airloads with experiment show that all models are deficient in some sense and not a single model predicts all airloads consistently and in agreement with experiment for all flow conditions. For the attached flow condition, the Renormalization Group Theory (RNG), the Johnoson-King (J-K), and the Spalart-Allmaras (S-A) models have better performance. The Baldwin-Lomax (B-L) and the Baldwin-Barth (B-B) models fair poorly. At the light-stall condition, the results for the RNG, the J-K, and S-A models are in agreement with experiment for the upstroke but they all over predict the separation shown by the experiment and therefore have bigger hysteresis loops than experimental results. The B-B model results are also in good agreement for upstroke but have poor lift hysteresis for downstroke. It has superior drag and pitching-moment predictions. For deep-stall conditions, the airloads for the RNG, the B -B, and the S-A models have fair agreement with experiment, but the B-B model performed better at the extreme deep-stall condition. Overall, the RNG model provides significant improvement over the B-L model in all flow regimes with no additional computational cost. The Baldwin-Barth model is the most expensive of the models considered here, costing about 2.5 times that of the Baldwin-Lomax model. Finally, a brief discussion of the effects of grid density, time-step size, and numerical dissipation on the unsteady solutions are also presented.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 93-3403 , ; 31 p.|Aug 09, 1993 - Aug 11, 1993; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A perturbation form of an implicit conservative, noniterative numerical algorithm for the two-dimensional thin layer Navier-Stokes and Euler equations is used to compute the interaction flow-field of a vortex with stationary airfoil. A Lamb-like analytical vortex having a finite core is chosen to interact with a thick (NACA 0012) and a thin (NACA 64A006) airfoil independently in transonic flow. Two different configurations of vortex interaction are studied, viz., (1) when the vortex is fixed at one location in the flowfield, and (2) when the vortex is convecting past the airfoil at freestream velocity. Parallel computations of this interacting flowfield are also done using a version of the Transonic Small Disturbance Code (ATRAN2). A special treatment of the leading edge region for thin airfoils is included in this code. With this, the three methods gave qualitatively similar results for the weaker interactions considered in this study. However, the strongest interactions considered proved to be beyond the capabilities of the small disturbance code. The results also show a far greater influence of the vortex on the airfoil flowfield when the vortex is stationary than when it is convecting with the flow.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 84-0254
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Unsteady interactions of strong concentrated vortices, distributed gusts, and sharp-edged gusts with stationary airfoils were analyzed in two-dimensional transonic flow. A simple and efficient method for introducing such vortical disturbances was implemented in numerical codes that range from inviscid transonic small disturbance to thin-layer Navier Stokes. The numerical results demonstrate the large distortions in the overall flow field and in the surface air loads that are produced by various vortical interactions. The results of the different codes are in excellent qualitative agreement, but, as might expected, the transonic small-disturbance calculations are deficient in the important region near the leading edge.
    Keywords: AERODYNAMICS
    Type: NASA-TM-86658 , REPT-85075 , NAS 1.15:86658 , USAAVSCOM-TM-84-A-10 , AD-A152417
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: This paper will review the advances made recently in the Navier-Stokes CFD methods to simulate aerodynamics and aeroacoustics of helicopter rotors and rotor-body flows. Although a complete flowfield simulation of full helicopter is currently not feasible with these methods, impressive gains have been made in analyzing individual components of this complex problem in a very detailed manner. The use of the state-of-the-art numerical algorithms in solution methods, in conjunction with powerful supercomputers, like the Cray-2, have enabled noticeable progress to be made in modeling viscous-inviscid interactions, blade-vortex interactions, tip-vortex: simulation and wake effects, as well as high speed impulsive noise in hover and forward flight for isolated rotor blades. This paper will critically evaluate the presently available Euler and Navier-Stokes methods, both finite-difference and finite volume methods using structured and unstructured grids for helicopter applications for accuracy, suitability, and computational efficiency. The review will also include the recent progress made using overset grids to model rotor-body flows. All the material for this review will be drawn from the published material shown below.
    Keywords: Aerodynamics
    Type: International Colloquium on Vortical Flows in the Aeronautics; Oct 12, 1994 - Oct 14, 1994; Aachan; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The viscous, three-dimensional flowfield of a lifting helicopter rotor in hover is calculated by using an upwind, implicit, finite-difference numerical method for solving the thin layer Navier-Stokes equations. The induced effects of the wake, including the interaction of tip vortices with successive blades, are calculated as part off the overall flowfield solution without using any ad hoc wake models. Comparison of the numerical results for the subsonic and transonic conditions show good agreement with the experimental data and with the previously published Navier-Stokes calculations using a simple wake model. Some comparisons with Euler calculations are also presented, along with some discussions of the grid refinement studies.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 30; 10; 2371-237
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Computational capabilities of a numerical procedure, called TURNS (transonic unsteady rotor Navier-Stokes), to calculate the aerodynamics and acoustics (high-speed impulsive noise) out to several rotor diameters are summarized. The procedure makes it possible to obtain the aerodynamics and acoustics information in one single calculation. The vortical wave and its influence, as well as the acoustics, are captured as part of the overall flowfield solution. The accuracy and suitability of the TURNS method is demonstrated through comparisons with experimental data.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 31; 5; p. 959-961.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This paper outlines some recent advances in the application of the Euler and Navier-Stokes computational fluid dynamics methods to analyze nonlinear problems of helicopter aerodynamics and acoustics. A complete flowfield simulation of helicopters is currently not feasible with these methods. However, the use of the state-of-the-art numerical algorithms in conjunction with powerful supercomputers, like the Cray-2, have enabled notable progress to be made in modeling several individual components of this complex flow in hover and forward flight.
    Keywords: AERODYNAMICS
    Type: Sep 09, 1991 - Sep 12, 1991; Davis, CA; United States|; 6 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: An implicit delta form finite-difference algorithm for Euler equations in conservation law form has been used in preliminary calculations of three-dimensional wing-vortex interactions. Both steady and unsteady transonic flow wing-vortex interactions are computed. The computations themselves are meant to guide upcoming wind tunnel experiments of the same flow field. Various modifications to the numerical method that are intended to improve computational efficiency are also described and tested in both two- and three-dimensions.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 81-1206 , Fluid and Plasma Dynamics Conference; Jun 23, 1981 - Jun 25, 1981; Palo Alto, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...