ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 9 (1993), S. 71-80 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A large-scale sea-ice - oceanic mixed-layer model for the Southern Ocean is forced with daily atmospheric fields from operational numerical weather prediction analyses. The strength of the atmospheric forcing is modified considering atmospheric surface-layer physics, which is itself directly dependent on the instantaneous sea-ice condition provided by the sea-ice model. In earlier applications, the atmospheric drag on sea ice was computed from the local momentum transfer over ice. In the present study, this is replaced by a large-scale momentum flux, which is characterized by a large-scale stability function and a large-scale roughness length. The large-scale roughness length depends on the local skin drags and on the form drag, where the latter is given as a function of the ice-plus-snow freeboard and the ice concentration, both provided by the sea-ice model. The thermodynamic part of the calculation is given by the local fluxes, which depend on the local stability of the atmospheric surface layer. This, physically more reasonable, description of the largescale dynamic forcing generally leads to an increase of the momentum transfer via an increase of the roughness length and a decrease of the stability in the atmospheric surface layer. Finally, this yields improved model results, especially in terms of a more dynamic pattern of the ice-thickness distribution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 9 (1994), S. 235-243 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. The biome model of Prentice et al. (1992a) is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut für Meteorologie. This study is undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential north-east shift of biomes is expected from a simulation with enhanced CO2 concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favourable for the existence of certain biomes, not as a prediction of a future distribution of biomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 9 (1994), S. 235-243 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The biome model of Prentice et al. (1992a) is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fur Meteorologie. This study is undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced C02 concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favourable for the existence of certain biomes, not as a prediction of a future distribution of biomes.[/ab]
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 54 (1991), S. 387-410 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The concept of blending height is used to estimate areally averaged surface fluxes of momentum and heat in a stratified, horizontally inhomogeneous surface-layer flow. This concept is based on the assumption that at sufficiently large heights above a heterogeneous surface, subsequent surface modifications will not be recognizable in the flow individually, but overall flux and mean profiles will represent the surface condition of a large area. The height at which the flow becomes approximately independent of horizontal position is called blending height according to Wieringa (1986). Here, it is proposed to classify the ground surface in a surface-layer grid box of a larger-scale model into several land-use categories. Surface momentum and heat fluxes should be estimated for each category at the blending height. The grid-averaged surface fluxes are to be obtained by the average of surface fluxes on each land-use surface weighted by its fractional area. The postulate of computing the surface fluxes at the blending height leads to a new formulation of turbulent transfer coefficients. The proposed parameterization has been tested by employing a small-scale numerical model as a surface-layer grid box of a hypothesized larger-scale model. Several quite different flow configurations have been studied in order to investigate the performance of the new parameterization. Generally, the relative errors of estimated averaged surface fluxes are found to be well within ±10%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 68 (1994), S. 201-205 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Walmsley's (1992) proposal for a new PBL Resistance Law required blending between surface- and matched-layer logarithmic velocity profiles. Here it is suggested that blending should be restricted to the matched layer, in contrast to Walmsley's original formulation in which blending was done in the surface layer. This modification does not have any noticeable effect on the wind speed profile and only minimal impact on the wind shear, but it yields more realistic profiles of wind direction. In particular, all the adjustment of wind direction takes place above the surface layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 54 (1991), S. 1-27 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Micro-scale turbulent transport processes over the marginal ice zone have been studied by use of a two-dimensional numerical model. It has been found that internal boundary layers (IBLs) of horizontal mean velocity, temperature, and specific humidity reveal a near field and a far field. In the near field, the change in surface roughness dominates the height and growth rate of a velocity IBL. The change in surface heat flux governs the near field of a temperature and humidity IBL. In the far field, approximately x/¦L *2 ¦ ~ 20, where L *2 is the downstream Obukhov length, the downstream stratification more and more influences the growth rate of IBLs basically by modifying the eddy viscosity. Above more complex terrain consisting of an ensemble of ice strips and leads, a merging height h M develops, below which the horizontal variability of the surface modification is clearly observed; h M varies with the length scale L of surface modification approximately in proportion to h M /L ~ 1/20 – 1/10, as a rule of thumb. Above the merging height, an enveloping IBL exists, whose growth depends on the ice cover, i.e., on the integral of surface modification, but changes very little with L. Local advection of momentum, heat, and moisture clearly affects the local surface heat fluxes. Sensible and latent heat fluxes are found to show also a near and far field. However, if areally averaged surface fluxes are to be deduced from grid-averaged flow variables, then details of local advection can be neglected to a reasonably good approximation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-02-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-01-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-03-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-01-01
    Print ISSN: 0960-1686
    Electronic ISSN: 1878-2124
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...