ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 141 (1994), S. 21-28 
    ISSN: 1432-1424
    Keywords: Fatty acids ; Liposomes ; Cation transport ; Membrane transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The rate of change of internal pH and transmembrane potential has been monitored in liposomes following the external addition of various cation salts. Oleic acid increases the transmembrane movement of H+ following the imposition of a K+ gradient. An initial fast change in internal pH is seen followed by a slower rate of alkalinization. High concentrations of the fatty acid enhance the rate comparable to that seen in the presence of nigericin in contrast to the effect of FCCP (carbonyl cyanide p-(tri-fluoromethoxy)phenyl hydrazone) which saturates at an intermediate value. The ability of nonesterified fatty acids to catalyze the movement of cations across the liposome membrane increases with the degree of unsaturation and decreases with increasing chain length. Li and Na salts cause a similar initial fast pH change but have less effect on the subsequent slower rate. Similarly, the main effect of divalent cation salts is on the initial fast change. The membrane potential can enhance or inhibit cation transport depending on its polarity with respect to the cation gradient. It is concluded that nonesterified fatty acids have the capability to complex with, and transport, a variety of cations across phospholipid bilayers. However, they do not act simply as proton/cation exchangers analogous to nigericin nor as protonophores analogous to FCCP. The full cycle of ionophoric action involves a combination of both functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 18 (1994), S. 43-57 
    ISSN: 1432-1009
    Keywords: Streams ; Erosion ; Sediment ; Woody debris ; Channel degradation ; Habitat restoration ; Fish ; Diversity indices
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Channel incision is a widespread phenomenon that results in stream and riparian habitat degradation. Fishes and physical habitat variables were sampled at base flow from three incised stream channels and one reference stream in northwest Mississippi, USA, to quantify incision effects on fish habitat and provide a basis for habitat rehabilitation planning and design. Incised channels were sampled in spring and autumn; the reference channel was sampled only in the autumn. Incised channel habitat quality was inferior to the reference channel despite the presence of structures designed to restore channel stability. Incised channels had physical habitat diversity levels similar to a nonincised reference channel, but contained fewer types of habitat. At base flow, incised channels were dominated by shallow, sandy habitats, moderate to high mean local Froude numbers, and had relatively little organic debris in their beds. In contrast, the reference stream had greater mean water depth, contained more woody debris, and provided more deep pool habitat. Fish assemblages in incised channels were composed of smaller fishes representing fewer species relative to the reference site. Fish species richness was directly proportional to the mean local Froude number, an indicator of the availability of pool habitat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-01-01
    Print ISSN: 0364-152X
    Electronic ISSN: 1432-1009
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...