ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Biomass allocation ; Nicotiana ; Nitrogen nutrition ; Photosynthesis ; Relative growth rate ; Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) ; Transgenic plant (tobacco antisense DNA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wild-type tobacco (Nicotiana tabacum L.) plants and transgenic tobacco transformed with antisense rbcS to decrease expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) were grown at 300 mol-m−2 · s−1 irradiance and 20° C at either 0.1, 0.7 or 5 mM NH4NO3. In high nitrogen (N), growth was reduced in parallel with the inhibition of photosynthesis when Rubisco was decreased by genetic manipulation. In limiting N, photosynthesis was reduced strongly when Rubisco was decreased by genetic manipulation, but growth was hardly affected. At all N levels, decreased expression of Rubisco led to a decrease in the amount of starch accumulated in the leaves. There was a large increase of the specific leaf area (SLA; leaf area maintained per unit dry weight in the leaf) in plants with decreased Rubisco. Increased SLA was associated with an increased inorganic and a decreased carbon contribution to leaf structural dry weight. The increased SLA represents a more efficient investment of photosynthate with respect to maximisation of leaf area and light interception, and partly compensates for the decreased rate of photosynthesis in plants with decreased expression of Rubisco. The changes of starch content and SLA were particularly large in limiting N, when growth rate was effectively independent of the rate of photosynthesis. Increased N availability led to a large increase of the shoot/ root ratio, but only a small increase in SLA. It is argued that N availability and the availability of photosynthate both regulate storage and allocation of biomass to optimize resource utilization, but achieve this via different mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Nicotiana (photosynthesis) ; Nitrogen ; Photosynthesis (control analysis) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of nitrogen supply during growth on the contribution of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) to the control of photosynthesis was examined in tobacco (Nicotiana tabacum L.). Transgenic plants transformed with antisense rbcS to produce a series of plants with a progressive decrease in the amount of Rubisco were used to allow the calculation of the flux-control coefficient of Rubisco for photosynthesis (CR). Several points emerged from the data: (i) The strength of Rubisco control of photosynthesis, as measured by CR, was altered by changes in the short-term environmental conditions. Generally, CR was increased in conditions of increased irradiance or decreased CO2. (ii) The amount of Rubisco in wild-type plants was reduced as the nitrogen supply during growth was reduced and this was associated with an increase in CR. This implied that there was a specific reduction in the amount of Rubisco compared with other components of the photosynthetic machinery. (iii) Plants grown with low nitrogen and which had genetically reduced levels of Rubisco had a higher chlorophyll content and a lower chlorophyll a/b ratio than wild-type plants. This indicated that the nitrogen made available by genetically reducing the amount of Rubisco had been re-allocated to other cellular components including light-harvesting and electron-transport proteins. It is argued that there is a “luxury” additional investment of nitrogen into Rubisco in tobacco plants grown in high nitrogen, and that Rubisco can also be considered a nitrogen-store, all be it one where the opportunity cost of the nitrogen storage is higher than in a non-functional storage protein (i.e. it allows for a slightly higher water-use efficiency and for photosynthesis to respond to temporarily high irradiance).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...