ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Maize  (3)
  • 1990-1994  (3)
Collection
Keywords
Publisher
Years
Year
  • 1
    ISSN: 1432-2242
    Keywords: Sorghum ; Restriction Fragment Length Polymorphism ; Genetic maps ; Genomic structure ; Maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Densely saturated genetic maps of neutral genetic markers are a prerequisite either for plant breeding programs to improve quantitative traits in crops or for evolutionary studies. cDNA and genomic clones from maize were utilized to initiate the construction of a RFLP linkage map in Sorghum bicolor. To this purpose, an F2 population was produced from starting parental lines IS 18729 (USA) and IS 24756 (Nigeria) that were differentiated with regard to many morphological and agronomical traits. A total of 159 maize clones were hybridized to the genomic DNA of the two parents in order to detect polymorphism: 154 probes hybridized to sorghum and 58 out of these were polymorphic. In almost all of the cases hybridization patterns were similar between maize and sorghum. The analysis of the segregation of 35 polymorphic clones in an F2 population of 149 individuals yielded five linkage groups. The three principal ones recall regions of maize chromosomes 1, 3 and 5: in general, colinearity was maintained. A possible inversion, involving a long region of maize chromosome 3, was detected. Simulations were also performed to empirically obtain a value for the lowest number of individuals of the F2 population needed to obtain the same linkage data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 81 (1991), S. 713-719 
    ISSN: 1432-2242
    Keywords: Thermotolerance ; Membrane stability ; Restriction fragment length polymorphism ; Heat shock proteins ; Maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cellular membrane stability (CMS) is a physiological index widely used to evaluate thermostability in plants. The genetic basis of the character has been studied following two different approaches: restriction fragment length polymorphism (RFLP) analysis, and the effects of segregating heat shock protein (HSP) loci. RFLP analysis was based on a set of recombinant inbreds derived from the T32 × CM37 F1 hybrid and characterized for about 200 RFLP loci. Heritability of CMS estimated by standard quantitative analysis was 0.73. Regression analysis of CMS on RFLPs detected a minimum number of six quantitative trait loci (QTL) accounting for 53% of the genetic variability. The analysis of the matrices of correlation between RFLP loci, either within or between chromosomes, indicates that no false assignment was produced by this analysis. The effect of HSPs on the variability of the CMS was tested for a low-molecular-weight peptide (HSP-17) showing presence-absence of segregation in the B73 × Pa33 F2 population. Although the genetic variability of the character was very high (h 2=0.58) the effect of HSP-17 was not significant, indicating either that the polypeptide is not involved in the determination of the character or that its effect is not statistically detectable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: QTL ; Gibberella zeae ; Maize ; RFLP ; RAPD
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The basic prerequisite for an efficient breeding program to improve levels of resistance to pathogens in plants is the identification of genes controlling the resistance character. If the response to pathogens is under the control of a multilocus system, the utilization of molecular markers becomes essential. Stalk and ear rot caused by Gibberella zeae is a widespread disease of corn: resistance to G. zeae is quantitatively inherited. Our experimental approach to understanding the genetic basis of resistance to Gibberella is to estimate the genetic linkage between available molecular markers and the character, measured as the amount of diseased tissue 40 days after inoculation of a suspension of Fusarium graminearum, the conidial form of G. zeae, into the first stalk internode. Sensitive and resistant parental inbreds were crossed to obtain F1 and F2 populations: the analysis of the segregation of 95 RFLP (restriction fragment length polymorphism) clones and 10 RAPD (random amplified polymorphic DNA) markers was performed on a population of 150 F2 individuals. Analysis of resistance was performed on the F3 families obtained by selfing the F2 plants. Quantitative trait loci (QTL) detection was based either on analysis of regression coefficients between family mean value and allele values in the F2 population, or by means of interval mapping, using MAPMAKER-QTL. A linkage map of maize was obtained, in which four to five genomic regions are shown to carry factors involved in the resistance to G. zeae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...