ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 32 (1991), S. 1389-1409 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An explicit expression for the stiffness matrix is worked out for a triangular plate bending element considering the effect of transverse shear deformation. The element has twelve nodes on the sides and four nodes internal to it. The formulation is displacement type and the use of area co-ordinates makes it possible to obtain the shape functions explicitly. Separate polynomials are assumed for transverse displacement and rotations. To obtain the element stiffness matrix no matrix inversion or numerical integration need be carried out and only a few matrix multiplications of low order are necessary. The element, which is initially of thirty five degrees of freedom, can be reduced to a thirty degrees of freedom one by condensation of the internal nodes. An interesting feature of the element developed is that the values of nodal moments computed at a node point, considering different elements surrounding the node, do not vary significantly. Thus the nodal moments can be obtained directly at node points. Also, the element does not give rise to any inconvenience like locking, even for very thin plates. The straightforward approach in formation of the element stiffness will cut down the storage space considerably and will also call for less CPU time, thus making the use of the element well suited to low capacity computers. A number of plate bending problems have been worked out using the present element for different thickness to side ratios and a comparison has been made with the available results. Good accuracy has been observed in all cases, even for a small number of elements.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 30 (1990), S. 419-430 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A new formulation of an eighteen-degrees-of-freedom higher-order triangular plate bending element using triangular area co-ordinates is presented. The displacement function w is taken as the complete fifth-order polynomial in area co-ordinates. The normal slope along an edge of the triangle is constrained to vary cubically. The twenty-one constants are expressed explicity in terms of eighteen degrees of freedom. The element stiffness matrix is expressed as a product of component matrices for which explicit expressions are developed and presented. No numerical inversion or integration is necessary. The formulation is expected to be useful specially for microcomputers.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Communications in Applied Numerical Methods 8 (1992), S. 129-133 
    ISSN: 0748-8025
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Plate-bending elements with the inclusion of transverse shear effects are important in analysing problems of transverse bending of relatively thick plates. Several such elements are available. Recently another element with a triangular geometry has been suggested. The construction of the element stiffness matrix follows conventional procedure which involves rigorous matrix computations. An alternative method of obtaining the stiffness matrix explicitly for such an element is suggested in the present work. Thus the process of matrix inversion and a considerable degree of matrix multiplications can be avoided in constructing the element stiffness matrix. Explicit expressions worked out may be conveniently used in microcomputers.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...