ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical Engineering  (2)
  • 1990-1994  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 721-733 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Poly(ethylene 2,6, naphthalene dicarboxilate), PEN, is very similar to poly(ethylene terephthalate), PET, in its chemical structure and was, therefore, expected to exhibit similar processing characteristics. We, however, observed a few problems during stretching of PEN, the most important of which was necking behavior at 145°C, which is between Tg (117°C) and Tcc (195°C). This is usually observed in PET only when it is stretched close to or below Tg. At temperatures between Tg and Tcc (cold crystallization temperature) PET stretches rather uniformly. The temperature window for film stretching appears to be rather wide, but our results indicate that this is not the case. Films stretched to high stretch ratios become uniform due to propagation and final disappearance of necks as a result of stress hardening. Our attempts at stretching these films at higher temperatures indicated that necking is eliminated, but so is stress induced crystallization, which causes stress hardening (unless high stretching rates are employed). The presence of stress hardening is essential for obtaining high quality, uniform films of these polymers. In addition, at high temperatures thermally activated crystallization which starts dominating the structure development, detrimentally affects the general appearance of the films. In brief, the PEN films we investigated have a narrower processing window than was anticipated based on their thermal behavior alone. At elevated temperatures the films are sensitive to the rate of stretching even more than typical PET processed at comparable conditions. The uniformity of the films depends on the stretch ratio, stretching mode, ratio(s) and rates and temperature. WAXS studies on the films indicate that the macromolecules packed into the low temperature crystal modification. In addition, WAXS pole figure studies suggest that naphthalene planes preferentially orient parallel to the film surface during biaxial stretching. The biaxially stretched films were observed to exhibit a bimodal chain orientation as evidenced by pole figure analysis of the (010) planes.
    Additional Material: 34 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 476-479 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The heat capacities of isotactic polypropylene and its composite with glass fiber have been measured at high pressure, up to 7 MPa, in the melt state by high pressure differential scanning calorimetry (HPDSC). The values also have been calculated from the data of specific volume (V) measured by dilatometry and thermal conductivity (κ) and thermal diffusivity (α) measured by a compensating hot wire method. The values of the heat capacity measured from HPDSC are consistent with those from the calculation method. The heat capacities of molten polypropylene and its composite increase linearly with temperature at a constant pressure and decrease with pressure at a constant temperature. It was found that the heat capacity of polypropylene is insensitive to molecular weight. The heat capacities of molten polypropylene composites are found to be predicted by an additive rule from the weight fractions of heat capacities of polypropylene and glass fiber.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...