ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 153 (1992), S. 607-613 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We previously demonstrated that insulin accumulated in the nucleus in several cell types and partially characterized the uptake mechanisms and pathways in H35 rat hepatoma cells. Nuclear accumulation of insulin was energy independent, time, temperature, and insulin concentration dependent, but apparently nonsaturable. This study investigated further the initial endocytotic pathways that contribute to the nuclear accumulation of insulin using trypsin treatment of the cells to prevent insulin binding to its plasma membrane receptor. Total cell-associated, intracellular, and nuclear insulin were compared in control and trypsin-treated H35 hepatoma cells. Trypsin treatment markedly decreased total cell-associated and intracellular insulin as well as the nuclear accumulation of insulin when cells were incubated with 2.8 ng/ml insulin. When the cells were incubated with 100 ng/ml insulin, trypsin treatment totally inhibited insulin binding to the plasma membrane for at least 90 min. However, intracellular accumulation of insulin was reduced by only 50% at 60 min, and trypsin treatment failed to inhibit the nuclear accumulation of insulin. Chemical extraction and Sephadex G-50 chromatography revealed nuclear associated insulin in trypsin-treated cells was identical to that in control cells incubated with either 2.8 or 100 ng/ml insulin. These results suggest that a nonreceptor mediated uptake pathway, i.e., fluid-phase endocytosis, contributed significantly to the nuclear accumulation of insulin at high insulin concentrations, but at lower insulin concentrations the receptor-mediated pathway predominated. No matter which initial endocytotic route was used to internalize insulin, the insulin apparently associated with the same nuclear matrix proteins. This association of insulin with the nuclear matrix may be involved in regulation of nuclear events such as cell growth and differentiation or gene transcription. © 1992 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 35 (1993), S. 421-426 
    ISSN: 1040-452X
    Keywords: Preimplantation embryo ; Protein database ; Growth factors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The identification of growth factors and/or receptors produced by mammalian embryos or present in the maternal reproductive tract is of basic interest, as well as having practical application. Early studies established that receptors binding insulin and the insulin-like growth factors (IGFs) are expressed by preimplantation mouse embryos. These studies have been confirmed at the molecular level using RT-PCR techniques. In addition, high resolution electron microscopy has shown that insulin is internalized by the cells of the blastocyst stage mouse embryo, and that immunologically intact insulin is detectable in the cells of the trophectoderm and inner cell mass. Similar studies with gold labelled IGF-I have shown that this ligand is also bound and internalized by mouse blastocysts. However, although all blastocysts express receptors that bind IGF-I on the basolateral cell surface of the trophectoderm, only 30% exhibit apically located receptors. In order to elucidate the functions of IGFs in early mouse development, we are in the process of constructing protein databases for embryos at the eight-cell and blastocyst stage. By the use of the database, it should prove possible to elucidate targets of growth factor action. © 1993 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...