ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (385)
  • 1990-1994  (385)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 4920-4928 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Low shear (γ(overdot)=1 s−1) and shear rate dependent (1 s−1〈γ(overdot)〈100 s−1) viscosity measurements on aqueous suspensions of rodlike FD-virus particles (length=880 nm, diameter=9 nm) below and above the overlap concentration c* =1 particle/length3 are presented. Properties like intrinsic viscosity [η], the virus concentration and shear rate dependence of η are studied in deionized ("saltfree'') suspensions and in the presence of NaCl, where the Coulomb interaction between the particles is totally screened. In the latter case, [η] is in excellent agreement with theoretical predictions [A. R. Altenberger and J. S. Dahler, Macromolecules 18, 1700 (1985); R. M. Davis and W. B. Russel, Macromolecules 20, 518 (1987)]. As a function of the virus concentration, η follows certain power laws in c. The observed exponents depend here on the applied shear rate. In the low shear region, η(c) can be described by the well known Huggins behavior. An attempt to fit the data by the popular stretched exponential form failed. The variation of η with shear rate is compared with available theories [M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986); A. R. Altenberger and J. S. Dahler, Macromolecules 18, 1700 (1985); J. S. Dahler, S. Fesciyan, and N. Xystris, Macromolecules 16, 1673 (1983)]. A theory of Hess [Z. Naturforsch. Teil A 35, 915 (1980)] allows us to evaluate the concentration dependent values of the rotational diffusion constant Drot from the η(γ(overdot)) data which are found to be in very good agreement with the values of Drot, obtained by electric or magnetic birefringence [H. Kramer, M. Deggelmann, C. Graf, M. Hagenbüchle, C. Johner, and R. Weber, Macromolecules 25, 4325 (1992); J. F. Maguire and J. P. McTague, Phys. Rev. Lett. 45, 1891 (1980); H. Nakamura and K. Okano, Phys. Rev. Lett. 50, 186 (1983)]. For strong Coulomb interaction among the suspended viruses no adequate theory is available. Therefore, the data achieved under these conditions are interpreted in terms of the corresponding results of the non-Coulomb interacting samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 7087-7094 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Time correlation functions of the scattered light intensity are studied in aqueous solutions of charged rod-like fd-virus (L=880 nm, d=6 nm) at various ionic strengths. The short time behavior of the correlation function is dominated by the static structure factor S(q) which is also independently determined from static light scattering experiments. Comparison of correlation functions of solutions with high ionic strength (screened Coulomb interaction) and those of solutions with liquid-like nearest neighbor order (strong Coulomb interaction) shows different single particle diffusion coefficients on medium time scales at high scattering vectors, where mainly single particle properties are observed by light scattering. The single particle diffusion coefficient decreases with increasing structure peak height of the solutions. At low scattering vectors an extra slow mode component of the correlation function is observed for solutions with Coulomb interaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The pure rotational spectrum in the far-infrared and its absolute intensity in the vibrational ground state of CHD3 and CH3D, and the integrated band strength of the N=5 CH-stretching overtone of CHD3 in the near infrared to visible were measured by high-resolution interferometric Fourier transform techniques. The far-infrared data result in permanent electric dipole moments (||μz0||=(5.69±0.14)×10−3 D for CHD3, ||μz0||=(5.57±0.10)×10−3 D for CH3D), consistent with previous experimental data. The integrated N=5 overtone cross section is found to be (0.828±0.068) fm2. The overtone data are used, together with previous data, to derive a new, nine-dimensional, isotopically invariant dipole moment function for CH4 within the chromophore model for the CH chromophore in CHD3. With this function, the experimental data can be reproduced to an averaged factor of 1.2, in the best case. In the vibrational ground state, a nine-dimensional calculation of expectation values on a new, fully anharmonic potential surface was performed using the solution of the rovibrational Schrödinger equation by diffusion quantum Monte Carlo methods. The results for the rotational constants of several isotopomers, which include significant contributions from rovibrational interactions, indicate that the equilibrium CH bond length of methane is re=108.6 pm. The calculated value for the vibrationally averaged permanent dipole moment from these nine-dimensional vibrational quantum calculations, using the dipole moment function consistent with the analysis of the overtone bands, is μz0=−(6.6±0.4)×10−3 D for CHD3 (with positive z coordinate for the H atom) and μz0=(6.8±0.5)×10−3 D for CH3D (with positive z coordinate for the D atom) in essential agreement with the far-infrared rotational intensities. The sign could be determined unambiguously by comparison with ab initio data. We predict the permanent dipole moment of several further methane isotopomers. The polarity of the CH bond in methane is C−–H+, within our simple bond dipole model, but is discussed to be a model dependent (not purely experimental) quantity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 28-59 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report analytical representations of the six-dimensional potential energy hypersurface for (HF)2, the parameters of which are closely adjusted to low energy experimental properties such as hydrogen bond dissociation energy (D0=1062 cm−1 ) and vibrational–rotational spectra in the far and mid infrared. We present a detailed analysis of properties of the hypersurface in terms of its stationary points, harmonic normal mode amplitudes, and frequencies for the Cs minimum and C2h saddle point and effective Morse parameters and anharmonic overtone vibrational structure for the hydrogen bond and the HF stretching vibrations. The comparison between experimental data and the potential energy surface is carried out by means of accurate solutions of the rotational–vibrational Schrödinger equation with quantum Monte Carlo techniques, which include anharmonic interactions between all modes for the highly flexible dimer. Two extensions of the quantum Monte Carlo technique are presented, which are based on the clamped coordinate quasiadiabatic channel method and allow for the approximate calculation of excited rotational and vibrational levels.Predictions include dissociation energies D0 for isotopomers (XF)2 with X=μ, D, T (D0=477; 1169; 1217 cm−1 ). Unusual anharmonic isotope effects predicted for the out-of-plane bending fundamental ν6 [378; 276; 295; and 358 cm−1 for (HF)2, (DF)2, (HFDF), (DFHF)] can be understood in simple terms. Centrifugal effects both for the high frequency a-axis rotation and low frequency c-axis rotation are accurately calculated for the vibrational ground state and some excited states, with a best equilibrium center of mass distance Req.ab=5.14a0 between the HF monomers. A very large anharmonic interaction constant x46≈−16 cm−1 is predicted for the hydrogen bond vibration ν4 and for out-of-plane bending ν6. This leads to assignment of our earlier experimental observation of a band at 383 cm−1 as ν6+ν4−ν4(K=1←0) at almost exactly the predicted position. The fundamental ν4 is predicted at 130±10 cm−1. A new, indirect assignment of our experimental data gives ν4≈125 cm−1. Monte Carlo calculations are presented for quasiadiabatic channels and transition states for hydrogen bond dissociation. We present a discussion of symmetry correlations for these channels and symmetry effects in predissociation by rotation, nuclear spin symmetry, and parity violation. Large effects from zero point energy on the three-dimensional quantum centrifugal barriers for rotational predissociation are found. On the basis of the new data, a much improved statistical mechanical estimate for the equilibrium 2HF=(HF)2 is obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 2507-2515 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: To study the kinetics of metastable defect creation in amorphous hydrogenated silicon we introduce the Constant Degradation Method as a new experimental scheme. In contrast to conventional degradation experiments in which the incident light intensity is constant during light soaking, in this method the photoconductivity of the sample is kept constant by continuously increasing the light intensity. In this case a linear time dependence of the required light intensity and of the resulting defect density is observed experimentally. A detailed analysis of the method shows that the data obtained are in accordance with the assumption of the "bond-breaking'' model, i.e., the metastable defects are created by bimolecular recombination of localized electron-hole pairs. The observed time dependence is at variance with the stretched exponential time dependence predicted for dispersive transport models. Effects of sample heating due to high light intensities and of Fermi level shifts on the observed time dependence are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 720-727 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Precise cutting of biological tissue is possible with the Er:YAG laser because of the strong absorption of radiation exhibited by water containing media at a wavelength of 2.94 μm. To achieve control of the depth of drilled channels a thorough knowledge of the channel propagation mechanism is required. The channel propagation process of pulsed erbium laser radiation in liquid water, and in gelatin with a high water content, as substitutes for biological tissue is investigated experimentally and modeled theoretically. We explain the propagation process with a hydrodynamic model, which describes the channel propagation process in terms of energy, mass, and momentum balance equations, which influence the evaporation pressure at the phase boundary. As the key feature, the theory takes into account the deformability of cold material below the zone of absorption. We show that by modeling this hydrodynamic effect with the Bernoulli equation we can explain the channel propagation velocity in water and gelatin as a function of laser intensity over three orders of magnitude with appreciable accuracy. The comparison with the experimental data suggests that the channel propagation velocity for intensities below 0.1 MW/cm2, and the threshold intensity of 12 kW/cm2 for channel propagation, are dependent on the surface tension and the liquid viscosity. At intensities above 0.1 MW/cm2, we can even predict a small difference between the propagation velocities found in these materials by considering the effect of the different elastic properties on the pressure in the propagating channel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 1406-1409 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We describe first results for deuterium effusion from undoped and doped crystalline silicon (n- and p-type) treated in a D2 plasma under different conditions. The dependence of the effusion spectra on doping level, passivation temperature, sample bias, and preannealing are presented and the results are discussed on the basis of different D-bonding configurations in the passivated silicon samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 8470-8480 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a theoretical investigation of the electronic structure of oligorylenes (from perylene to heptarylene, including also the naphthalene molecule) and their corresponding polymer poly(peri-naphthalene) (PPN) using the nonempirical valence effective (VEH) method. The geometry of the unit cell used to generate the polymer is extrapolated from the PM3-optimized molecular geometries of the longest oligorylenes. That geometry shows some bond alternation along the perimeter carbon chains and a bond length of ≈1.46 A(ring) is calculated for the peri bonds connecting the naphthalene units. The VEH one-electron energy level distributions calculated for oligorylenes are used to interpret the experimental trends reported for the first ionization potentials, redox potentials, and lowest energy optical transitions. An excellent agreement is found between theoretical estimates and experimental values. The VEH band structure calculated for an isolated chain of PPN is interpreted in terms of the molecular orbitals of naphthalene. The ionization potential, electron affinity, and bandwidths obtained for PPN suggest a large capacity to form conducting p- or n-type materials. The small band gap of 0.56 eV predicted for PPN from VEH band structure calculations is in good agreement with theoretical and experimental estimates calculated by extrapolating the data reported for the oligomers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 4474-4483 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a theoretical investigation of the electronic structure of tetraphenyldithiapyranylidene (DIPSΦ4) using the nonempirical valence effective Hamiltonian (VEH) method. Molecular geometries are optimized at the semiempirical PM3 level which predicts an alternating nonaromatic structure for the dithiapyranylidene (DIPS) framework. The VEH one-electron energy level distribution calculated for DIPSΦ4 is presented as a theoretical XPS simulation and is analyzed by comparison to the electronic structure of its molecular components DIPS and benzene. The theoretical VEH spectrum is found to be fully consistent with the experimental solid-state x-ray photoelectron spectroscopy (XPS) spectrum and an excellent quantitative agreement between theory and experiment is achieved when comparing the energies of the main peaks. A detailed interpretation of all the experimental photoemission bands is reported in the light of the VEH results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 58 (1991), S. 1620-1622 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Excitonic states involved in electronic transport of undoped amorphous hydrogenated silicon (a-Si:H) are observed using spin-dependent photoconductivity (SDPC). Upon light soaking the excitonic signal decreases with regard to the SDPC signal due to recombination via dangling bonds. It has been suggested that excitonic tail-to-tail recombination leads to metastable defect creation in a-Si:H. Our experimental results are shown to be consistent with this model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...