ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (29)
  • Solar Physics
  • 2015-2019  (7)
  • 2000-2004  (25)
  • 1990-1994  (6)
  • 1
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Type: International Geoscience and Remote Sensing Symposium (IGARSS); Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: Aviris scenes are often rejected when cloud cover exceeds 10 percent. However, if the cloud cover is determined to be primarily cirrus rather than cumulus, inwater optical properties may still be extracted over open ocean.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Description: Optical case-2 waters near an ocean outfall were examined, using a combination fo AVIRIS imagery and ship-based surface and profile bio-optical measurements. Bio-optical mooring data were useful in determining the hydrodynamics of the area.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Description: The Local Scale Observation Site (LSOS) is the smallest study site of the Cold LandProcesses Experiment (CLPX) and is located within the Fraser Meso-cell Study Area (MSA), near the Fraser Experimental Forest Headquarters Facility, in Fraser, CO USA.The 100-m x 100-m site consists of a small open field, a managed dense canopy and an open, mixed age canopy. Unlike the other components of the experiment, which focus on spatial distributions at relatively brief snapshots in time, measurements at the local scale site focused on the temporal domain.
    Keywords: Earth Resources and Remote Sensing
    Type: Fall Meeting of the American Geophysical Union; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: MTRAP (Magnetic Transition Region Probe) will reveal the fine-scale physical processes in the Sun's magnetic transition region, the complex layer from the upper photosphere to the upper chromosphere/lower transition region. In the magnetic transition region plasma forces and magnetic forces are of comparable strength, which results in complex interplay of the two, which interplay governs the coupling of the convectively-driven deeper layers to the magnetically-driven upper transition region and inner corona. The fine-scale magnetic structure, processes, and events in the magnetic transition region are key to the genesis of the Sun's entire hot, dynamic outer atmosphere and to the initiation of large eruptive events. MTRAP will be a single spacecraft in Sun-synchronous Earth orbit. Because MTRAP will probe and measure the 3-D structure and dynamics of the magnetic field and plasma in the chromosphere and transition region with unprecedented resolution, the required telescope size and telemetry rates dictate that MTRAP be in Earth orbit, not in deep space. The observations will feature visible and infrared maps of vector magnetic and velocity fields in the magnetic transition region and photosphere. These will have large field of view (greater than 100,000 km), high resolution (greater than 100 km), and high sensitivity (greater than 30 G in transverse field). These observations of the lower atmosphere will be complemented by UV maps of the structure, velocity, and magnetic field (including the full vector field if technically feasible) higher up, in the upper chromosphere and lower transition region. MTRAP will also have an EUV imaging spectrograph observing coronal structure and dynamics in the same field of view with comparable resolution. Specific phenomena to be analyzed include spicules, bright points, jets, the base of plumes, and the triggering of eruptive flares and coronal mass ejections. Additional information is included in the original extended abstract.
    Keywords: Solar Physics
    Type: NASA''s Living with a Star Science Workshop; Nov 13, 2002 - Nov 15, 2002; Laurel, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality assurance/quality control analyses were performed on each dataset. Cross sections extracted form the high density and then the decimated datasets were individually input into an H&H model to determine the model's sensitivity to topographic variation and the effect of that variation on the resulting water profiles. Additional analysis was performed on the Brownsville, Texas, LIDAR data to determine the percentage of returns that "penetrated" various types of canopy or vegetative cover. It is hoped that the results of these studies will benefit state and local communities as they consider the post spacing at which to acquire LIDAR data (which affects cost) and will benefit FEMA as the Agency assesses the use of different technologies for updating National Flood Insurance Program and related products.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0003-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: A major focus of solar physics is the measurement of the temporal and spatial variability of solar magnetic fields from the photosphere into the lower corona, together with the study of how their behavior produces the dynamic phenomena in this region such as flares and Coronal Mass Injection (CMEs). Considerable success has been achieved in the characterization of the full vector field in the photosphere, where P, the ratio of the gas pressure to the magnetic pressure, is greater than or equal to 1. At higher levels in the atmosphere where beta is less than 1, the magnetic field (through the Lorentz force) controls the structure and dynamics of the solar atmosphere, and rapid changes in structure with release of energy become possible. However, observations of the field at these higher levels have proven to be difficult, placing a serious limitation on our understanding of the physical processes occurring there. This poster will discuss the Solar Ultraviolet Magnetograph Investigation (SUMI), a hardware development study for an instrument capable of measuring the polarization in ultraviolet lines of C IV and Mg II formed in the transition region and upper chromosphere. We are currently developing optical technologies necessary to build an instrument that will achieve a major advance in performance over that of earlier attempts (e.g., SMM/UVSP). Initially configured as a sounding rocket payload, such a UV magnetograph would allow us to make exploratory measurements extending the observation of solar magnetic fields into new and dynamic regimes. This work is supported by NASA through the SEC Program in Solar Physics and the program for Technology Development for Explorer Missions and Sofia.
    Keywords: Solar Physics
    Type: 31st Meeting of the Solar Physics Division; Jun 19, 2000 - Jun 22, 2000; Stateline, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The University of Colorado's Laboratory for Atmospheric and Space Physics (CU/LASP) along with the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL) designed, implemented, tested, and demonstrated a prototype of the distributed, hierarchical planning and scheduling system comtemplated for the Earth Observing System (EOS) project. The planning and scheduling prototype made use of existing systems: CU/LASP's Operations and Science Instrument Support Planning and Scheduling (OASIS-PS) software package; GSFC's Request Oriented Scheduling Engine (ROSE); and JPL's Plan Integrated Timeliner 2 (Plan-It-2). Using these tools, four scheduling nodes were implemented and tied together using a new communications protocol for scheduling applications called the Scheduling Applications Interface Language (SAIL). An extensive and realistic scenario of EOS satellite operations was then developed and the prototype scheduling system was tested and demonstrated using the scenario. Two demonstrations of the system were given to NASA personnel and EOS core system (ECS) contractor personnel. A comprehensive volume of lessons learned was generated and a meeting was held with NASA and ECS representatives to review these lessons learned. A paper and presentation on the project's final results was given at the American Institute of Aeronautics and Astronautics Computing in Aerospace 9 conference.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA-CR-200538 , NAS 1.26:200538
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...