ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (366)
  • 1990-1994  (69)
Collection
Keywords
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 55 (1993), S. 155-165 
    ISSN: 1432-0819
    Keywords: Ignimbrite ; Canary Islands ; Mogán Fomation ; Comendite ; Trachyte ; Rheomorphism ; Shear zone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract the single ignimbrite cooling unit E (average thickness, 28 m; volume, ca. 30 km3) forms the uppermost member of the Miocene Upper Mogán Formation on Gran Canaria. It is strongly chemically zoned from basal, first-erupted comendite (peralkaline rhyolite) to late-erupted trachyte, and, apart from an upper trachytic zone, it is densely welded. E was emplaced onto a surface inclined ca. 2–5° from the source caldera. Detailed mapping of key sections, up to 300 m long, exposed in barranco walls, ca. 10 km from the caldera margin, reveals structures that are interpreted to have been produced by rheomorphic deformation of the ignimbrite along shear zones. The shear zones formed within the lower-viscosity comenditic tuff. Extensional structures include mega-boudinage and ‘decapitated sequences’ and compression resulted in sequence repitition by overthrusting. Mechanisms traditionally thought to be important during rheomorphic deformation of welded tuffs (compaction, lateral creep, folding, vertical density-driven diapirism) cannot account for these features, which reflect lateral (post-compactional) rheomorphic movement locally in excess of 800 m. We suggest the following sequence of events: emplacement of the several flow units; compaction, with little lateral movement; rheomorphic deformation. During and after compaction, layers of secondary porosity developed within the comenditic tuff, possibly where upward escape of gas was prevented by overlying, relatively impermeable layers of densely compacted ignimbrite. These structurally weak layers of high porosity subsequently acted as shear zones.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 56 (1994), S. 157-158 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 52 (1990), S. 271-285 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Valley-fill ignimbrites of the Middle Laacher See Tephra (MLST) in the proximal depositional fan south of Laacher See volcano are laterally continuous with fine-grained overbank-facies deposits, 0.5–1.5 m thick, covering higher elevations and interfluves between the paleovalleys. The overbank deposits consist of up to 12 ash layers, each 4–10 cm thick, which show internal structures typical of ash-flow transport, such as poor sorting, reverse size-grading of pumice, local normal grading of coarse ash-sized lithics above a fine-grained basal layer, cross-stratification behind obstacles, and erosional unconformities. Thickness, median grain-size, and number of individual layers decrease systematically with distance from the vent. Overbank ash layers thicken at the valley slopes and form discrete valley-fill ignimbrite flow units in the paleochannels with median grain size increasing from ≤63 μm to ≤350 μm. Toward the center of paleochannels, however, the well-defined overbank facies is obscured by mutual erosion of individual flow units. Overlapping data fields in ternary grain-size variation diagrams indicate the overbank facies to have evolved from ash flows chiefly through depletion of lapilli and coarse ash. Overbank-facies ash layers do not represent dust layers resulting from elutriation clouds of ash flows (co-ignimbrite ash) or surge deposits developed on higher ground due to low concentration of solids. They are similar in some parameters to Taupo-type ignimbrite veneer deposits, but are interpreted differently. The thin, fine-grained, Laacher See ash layers are thought to have been deposited from diluted portions of the flow proceeding directly from the eruption column while the main pyroclastic flows were confined to the paleovalleys radiating away from the eruptive center. The wide distribution of the thin ash layers is attributed to the balance of deposition from various flow parts and turbulent entraining and heating of ambient air that sustained sufficient mobility of the diluted flows to spread across hills and level ground.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 112 (1992), S. 1-19 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The 14.1 Ma composite welded ignimbrite P1 (45 km3 DRE) on Gran Canaria is compositionally zoned from a felsic lower part to a basaltic top. It is composed of four component magmas mixed in vertically varying proportions: (1) Na-rhyolite (10 km3) zoned from crystal-poor to highly phyric; (2) a continuously zoned, evolved trachyte to sodic trachyandesite magma group (6 km3); (3) a minor fraction of Na-poor trachyandesite (〈1 km3); and (4) nearly aphyric basalt (26 km3) zoned from 4.3 to 5.2 wt% MgO. We distinguish three sites and phases of mixing: (a) Mutual mineral inclusions show that mixing between trachytic and rhyolitic magmas occurred during early stages of their intratelluric crystallization, providing evidence for long-term residence in a common reservoir prior to eruption. This first phase of mixing was retarded by increasing viscosity of the rhyolite magma upon massive anorthoclase precipitation and accumulation. (b) All component magmas probably erupted through a ring-fissure from a common upper-crustal reservoir into which the basalt intruded during eruption. The second phase of mixing occurred during simultaneous withdrawal of magmas from the chamber and ascent through the conduit. The overall withdrawal and mixing pattern evolved in response to pre-eruptive chamber zonation and density and viscosity relationships among the magmas. Minor sectorial variations around the caldera reflect both varying configurations at the conduit entrance and unsteady discharge. (c) During each eruptive pulse, fragmentation and particulate transport in the vent and as pyroclastic flows caused additional mixing by reducing the length scale of heterogeneities. Based on considerations of magma density changes during crystallization, magma temperature constraints, and the pattern of withdrawal during eruption, we propose that eruption tapped the P1 magma chamber during a transient state of concentric zonation, which had resulted from destruction of a formerly layered zonation in order to maintain gravitational equilibrium. Our model of magma chamber zonation at the time of eruption envisages a basal high-density Na-poor trachyandesite layer that was overlain by a central mass of highly phyric rhyolite magma mantled by a sheath of vertically zoned trachyte-trachyandesite magma along the chamber walls. A conventional model of vertically stacked horizontal layers cannot account for the deduced density relationships nor for the withdrawal pattern.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 53 (1991), S. 612-634 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 μm and a maximum grain size of 250 to 350 μm. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 μm and a maximum grain size of 350 to 500 μm. Those of surge deposits are the coarsest grained with Md-values of 30 to 〉63 μm and a maximum grain size up to 2 mm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 52 (1990), S. 426-444 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Quaternary Herchenberg composite tephra cone (East Eifel, FR Germany) with an original bulk volume of 1.17·107 m3 (DRE of 8.2·106 m3) and dimensions of ca. 900·600·90 m (length·width·height) erupted in three main stages: (a) Initial eruptions along a NW-trending, 500-m-long fissure were dominantly Vulcanian in the northwest and Strombolian in the southeast. Removal of the unstable, underlying 20-m-thick Tertiary clays resulted in major collapse and repeated lateral caving of the crater. The northwestern Lower Cone 1 (LC1) was constructed by alternating Vulcanian and Strombolian eruptions. (b) Cone-building, mainly Strombolian eruptions resulted in two major scoria cones beginning initially in the northwest (Cone 1) and terminating in the southeast (Cones 2 and 3) following a period of simultaneous activity of cones 1 and 2. Lapilli deposits are subdivided by thin phreatomagmatic marker beds rich in Tertiary clays in the early stages and Devonian clasts in the later stages. Three dikes intruded radially into the flanks of cone 1. (c) The eruption and deposition of fine-grained uppermost layers (phreatomagmatic tuffs, accretionary lapilli, and Strombolian fallout lapilli) presumably from the northwestern center (cone 1) terminated the activity of Herchenberg volcano. The Herchenberg volcano is distinguished from most Strombolian scoria cones in the Eifel by (1) small volume of agglutinates in central craters, (2) scarcity of scoria bomb breccias, (3) well-bedded tephra deposits even in the proximal facies, (4) moderate fragmentation of tephra (small proportions of both ash and coarse lapilli/bomb-size fraction), (5) abundance of dense ellipsoidal juvenile lapilli, and (6) characteristic depositional cycles in the early eruptive stages beginning with laterally emplaced, fine-grained, xenolith-rich tephra and ending with fallout scoria lapilli. Herchenberg tephra is distinguished from maar deposits by (1) paucity of xenoliths, (2) higher depositional temperatures, (3) coarser grain size and thicker bedding, (4) absence of glassy quenched clasts except in the initial stages and late phreatomagmatic marker beds, and (5) predominance of Strombolian, cone-building activity. The characteristics of Herchenberg deposits are interpreted as due to a high proportion of magmatic volatiles (dominantly CO2) relative to low-viscosity magma during most of the eruptive activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-02-01
    Print ISSN: 0934-3504
    Electronic ISSN: 1865-5084
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...