ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 21 (1997), S. 51-58 
    ISSN: 1573-5087
    Keywords: abscisic acid (ABA) ; ABA metabolism ; leaf water status ; maize ; Commelina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Metabolism and distribution of xylem-fed ABA were investigated in leaves of maize (Zea mays) and Commelina communis when water stress and xylem pH manipulation were applied. 3H-ABA was fed to excised leaves via the transpiration stream. Water stress was applied through either a previous soil-drying before leaves were excised, or a quick dehydration after leaves were fed with ABA. Xylem-delivered ABA was metabolised rapidly in the leaves (half-life 0.7 h and 1.02 h for maize and Commelina respectively), but a previous soil-drying or a post-feeding dehydration significantly extended the half-life of fed ABA in both species. In the first few hours after ABA was fed into the detached leaves, percentages of applied ABA remaining unmodified were always higher in leaves which received water stress treatments than in control leaves. However the percentage decreased to below the control levels several hours later in leaves which received a previous soil-drying treatment prior to excision, but had then been rehydrated by the xylem-feeding process itself. One possible explanation for this could be a changed pattern of compartmentalisation for xylem-carried ABA. A post-feeding dehydration treatment also changed the distribution of xylem-fed ABA within the leaves: more ABA was found in the epidermis of Commelina leaves which had been dehydrated rapidly after ABA had been fed, compared to the controls. The levels of xylem-delivered ABA remaining unmodified increased as the pH of the feeding solution increased from 5 to 8. The results support the hypothesis that water stress and a putative stress-induced xylem pH change may modify stomatal sensitivity to ABA by changing the actual ABA content of the leaf epidermis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...