ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (6)
Collection
Years
Year
  • 1
    Publication Date: 1999-12-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: An analysis of nadir reflectivity Fourier spatial power spectra and autocorrelation functions at solar wavelengths and for cloudy conditions has been carried out. The data come from Landsat Thematic Mapper (TM) observations, while Monte Carlo (MC) simulations are used to aid the interpretation of the Landsat results. We show that radiative processes produce consistent signatures on power spectra and autocorrelation functions. The former take a variety of forms not shown or explained in previous observational studies. We demonstrate that the TM spectra can potentially be affected by both radiative "roughening" at intermediate scales (approx. 1 -5 km), being more prevalent at large solar zenith angles, and the already documented radiative "smoothing" at small scales (less than 1 km). These processes are wavelength dependent, as shown by systematic differences between conservative (for cloud droplets) TM band 4 (approx. 0.8 microns) and absorbing band 7 (approx. 2.2 microns): band 7 exhibits more roughening and less smoothing. This is confirmed quantitatively by comparing least-squared fitted power spectral slopes for the two bands. It is also corroborated by a slower decrease with distance of autocorrelation function values for band 4 compared to band 7. The appearance of roughening at large solar zenith angles is a result of side illumination and shadowing and adds an additional complexity to the power spectra. MC spectra are useful in illustrating that scale invariant optical depth fields can produce complex power spectra that take a variety of shapes under different conditions. We show that radiative roughening increases with the decrease of single scattering albedo and with the increase of solar zenith angle (as in the observations). For high Sun there is also a clear shift of the radiative smoothing scale to smaller values as droplet absorption increases. The shape of the power spectrum is sensitive to the magnitude and type of cloud top height variability, with the spectral signatures of decorrelation between reflectance and optical depth at large scales becoming stronger as the magnitude of cloud top variations increase. Finally, the usefulness of power spectral analysis in evaluating the skill of novel optical depth retrieval techniques in removing 3D radiative effects is demonstrated. New techniques using inverse Non-local Independent Pixel Approximation (NIPA) and Normalized Difference of Nadir Reflectivity (NDNR) yield optical depth fields which better match the scale-by-scale variability of the true optical depth field.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The key issue in retrieving aerosol optical thickness over land from shortwave satellite radiances is to identify and separate the signal due to scattering by a largely transparent aerosol layer from the noise due to reflection by the background surface, where the signal is relatively uniform compared to the highly inhomogeneous surface contribution. Sensitivity studies in aerosol optical thickness retrievals reveal that the apparent reflectance at the top of the atmosphere is very susceptible to the surface reflectance, especially when aerosol optical thickness is small. Uncertainties associated with surface reflectance estimation can greatly amplify the error of the aerosol optical thickness retrieval. To reduce these uncertainties, we have developed a "path radiance" method to retrieve aerosol optical thickness over land by extending the traditional technique that uses the "dark object" approach to extract the aerosol signal. This method uses the signature of the correlation of visible and mid-IR reflectance at the surface, and couples the correlation with the atmospheric effect. We have applied this method to a TM (Landsat Thematic Mapper) image acquired over the Oklahoma Southern Great Plains (SGP) site of DoE's ARM (Atmospheric Radiation Measurement) program on September 27, 1997, a very clear day during the first Landsat IOP (Intensive Observation Period). The retrieved mean aerosol optical thickness for TM band 1 at 0.49 micrometers and band 3 at 0.66 micrometers agree very well with the ground-based sun-photometer measurements at the ARM site. The ability to retrieve small aerosol optical thickness (such as 0.07 at 0.5 micrometers as in the example considered here) makes this path radiance technique promising. More importantly, the path radiance is relatively insensitive to surface inhomogeneity. The retrieved mean path radiances in reflectance units have very small standard deviations for both TM blue and red bands. This small variability of path radiance further supports the current aerosol retrieval method.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: We suggest a new approach to cloud retrieval, using a normalized difference of nadir reflectivities (NDNR) constructed from a non-absorbing and absorbing (with respect to liquid water) wavelength. Using Monte Carlo simulations we show that this quantity has the potential of removing first order scattering effects caused by cloud side illumination and shadowing at oblique Sun angles. Application of the technique to TM (Thematic Mapper) radiance observations from Landsat-5 over the Southern Great Plains site of the ARM (Atmospheric Radiation Measurement) program gives very similar regional statistics and histograms, but significant differences at the pixel level. NDNR can be also combined with the inverse NIPA (Nonlocal Independent Pixel Approximation) of Marshak (1998) which is applied for the first time on overcast Landsat scene subscenes. We demonstrate the sensitivity of the NIPA-retrieved cloud fields on the parameters of the method and discuss practical issues related to the optimal choice of these parameters.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...