ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-02-12
    Description: An alanyl-alanyl-phenylalanyl-7-amino-4-methylcoumarin-hydrolyzing protease particle copurifying with 26S proteasomes was isolated and identified as tripeptidyl peptidase II (TPPII), a cytosolic subtilisin-like peptidase of unknown function. The particle is larger than the 26S proteasome and has a rod-shaped, dynamic supramolecular structure. TPPII exhibits enhanced activity in proteasome inhibitor-adapted cells and degrades polypeptides by exo- as well as predominantly trypsin-like endoproteolytic cleavage. TPPII may thus participate in extralysosomal polypeptide degradation and may in part account for nonproteasomal epitope generation as postulated for certain major histocompatibility complex class I alleles. In addition, TPPII may be able to substitute for some metabolic functions of the proteasome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geier, E -- Pfeifer, G -- Wilm, M -- Lucchiari-Hartz, M -- Baumeister, W -- Eichmann, K -- Niedermann, G -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):978-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck Institute of Immunobiology, Stubeweg 51, D-79108 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9974389" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/analogs & derivatives/pharmacology ; Alleles ; Amino Acid Chloromethyl Ketones/pharmacology ; Aminopeptidases ; Animals ; Cell Survival ; Coumarins/metabolism ; Cysteine Endopeptidases/*metabolism ; Cytosol/enzymology ; Dipeptidyl-Peptidases and Tripeptidyl-Peptidases ; Epitopes/metabolism ; Genes, MHC Class I ; Hydrolysis ; Mice ; Molecular Weight ; Multienzyme Complexes/*metabolism ; Oligopeptides/metabolism ; Proteasome Endopeptidase Complex ; Serine Endopeptidases/chemistry/isolation & purification/*metabolism ; Serine Proteinase Inhibitors/pharmacology ; Substrate Specificity ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-08-11
    Description: The Escherichia coli chaperonin GroEL and its regulator GroES are thought to mediate adenosine triphosphate-dependent protein folding as an asymmetrical complex, with substrate protein bound within the GroEL cylinder. In contrast, a symmetrical complex formed between one GroEL and two GroES oligomers, with substrate protein binding to the outer surface of GroEL, was recently proposed to be the functional chaperonin unit. Electron microscopic and biochemical analyses have now shown that unphysiologically high magnesium concentrations and increased pH are required to assemble symmetrical complexes, the formation of which precludes the association of unfolded polypeptide. Thus, the functional significance of GroEL:(GroES)2 particles remains to be demonstrated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engel, A -- Hayer-Hartl, M K -- Goldie, K N -- Pfeifer, G -- Hegerl, R -- Muller, S -- da Silva, A C -- Baumeister, W -- Hartl, F U -- GM 50908/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Aug 11;269(5225):832-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Maurice E. Muller Institute, Biozentrum, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7638600" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Adenylyl Imidodiphosphate/pharmacology ; Chaperonin 10/chemistry/*metabolism/ultrastructure ; Chaperonin 60/chemistry/*metabolism/ultrastructure ; Hydrogen-Ion Concentration ; Magnesium/pharmacology ; Microscopy, Electron, Scanning Transmission ; Protein Folding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-11-22
    Description: Large macromolecular assemblies have evolved as a means of compartmentalizing reactions in organisms lacking membrane-bounded compartments. A tricorn-shaped protease was isolated from the archaeon Thermoplasma and was shown to form a multisubunit proteolytic complex. The 120-kilodalton monomer assembled to form a hexameric toroid that could assemble further into a capsid structure. Tricorn protease appeared to act as the core of a proteolytic system; when it interacted with several smaller proteins, it displayed multicatalytic activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamura, T -- Tamura, N -- Cejka, Z -- Hegerl, R -- Lottspeich, F -- Baumeister, W -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1385-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910281" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Cysteine Endopeptidases/metabolism ; Endopeptidases/*chemistry/genetics/isolation & purification/*metabolism ; Genes, Bacterial ; Microscopy, Electron ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Multienzyme Complexes/metabolism ; Peptides/metabolism ; Proteasome Endopeptidase Complex ; *Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Substrate Specificity ; Thermoplasma/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-04-28
    Description: The three-dimensional structure of the proteasome from the archaebacterium Thermoplasma acidophilum has been elucidated by x-ray crystallographic analysis by means of isomorphous replacement and cyclic averaging. The atomic model was built and refined to a crystallographic R factor of 22.1 percent. The 673-kilodalton protease complex consists of 14 copies of two different subunits, alpha and beta, forming a barrel-shaped structure of four stacked rings. The two inner rings consist of seven beta subunits each, and the two outer rings consist of seven alpha subunits each. A narrow channel controls access to the three inner compartments. The alpha 7 beta 7 beta 7 alpha 7 subunit assembly has 72-point group symmetry. The structures of the alpha and beta subunits are similar, consisting of a core of two antiparallel beta sheets that is flanked by alpha helices on both sides. The binding of a peptide aldehyde inhibitor marks the active site in the central cavity at the amino termini of the beta subunits and suggests a novel proteolytic mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lowe, J -- Stock, D -- Jap, B -- Zwickl, P -- Baumeister, W -- Huber, R -- New York, N.Y. -- Science. 1995 Apr 28;268(5210):533-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biochemie, Abteilung fur Strukturforschung, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7725097" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins ; Binding Sites ; Chaperonin 60/chemistry ; Computer Graphics ; Crystallography, X-Ray ; Cysteine Endopeptidases/*chemistry/metabolism ; Endopeptidases/*chemistry/metabolism ; Fourier Analysis ; Hydrogen Bonding ; Leupeptins/chemistry/metabolism ; *Models, Molecular ; Molecular Sequence Data ; Multienzyme Complexes/*chemistry/metabolism ; Protease Inhibitors/chemistry/metabolism ; Proteasome Endopeptidase Complex ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/metabolism ; Thermoplasma/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-04-28
    Description: The catalytic mechanism of the 20S proteasome from the archaebacterium Thermoplasma acidophilum has been analyzed by site-directed mutagenesis of the beta subunit and by inhibitor studies. Deletion of the amino-terminal threonine or its mutation to alanine led to inactivation of the enzyme. Mutation of the residue to serine led to a fully active enzyme, which was over ten times more sensitive to the serine protease inhibitor 3,4-dichloroisocoumarin. In combination with the crystal structure of a proteasome-inhibitor complex, the data show that the nucleophilic attack is mediated by the amino-terminal threonine of processed beta subunits. The conservation pattern of this residue in eukaryotic sequences suggests that at least three of the seven eukaryotic beta-type subunit branches should be proteolytically inactive.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seemuller, E -- Lupas, A -- Stock, D -- Lowe, J -- Huber, R -- Baumeister, W -- New York, N.Y. -- Science. 1995 Apr 28;268(5210):579-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung fur Strukturbiologie Max-Planck Institut fur Biochemie, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7725107" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins ; Binding Sites ; Coumarins/pharmacology ; Endopeptidases/*chemistry/metabolism ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Mutagenesis ; Protein Folding ; Sequence Alignment ; Serine Proteinase Inhibitors/pharmacology ; Thermoplasma/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 68 (1999), S. 1015-1068 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from ~31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-12-19
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-11-09
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-02-01
    Print ISSN: 0962-8924
    Electronic ISSN: 1879-3088
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-06-01
    Print ISSN: 0304-3991
    Electronic ISSN: 1879-2723
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...