ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (9)
Collection
Years
Year
  • 1
    Publication Date: 1998-01-01
    Description: As part of the winter environment in middle- and high-latitude regions, the interactions between wind, vegetation, topography and snowfall produce snow covers of non-uniform depth and snow water-equivalent distribution. A physically based numerical snow-transport model (SnowTran-3D) is developed and used to simulate this three-dimensional snow-depth evolution over topographically variable terrain. The mass-transport model includes processes related to vegetation snow-holding capacity, topographic modification of wind speeds, snow-cover shear strength, wind-induced surface-shear stress, snow transport resulting from saltation and suspension, snow accumulation and erosion, and sublimation of the blowing and drifting snow. The model simulates the cold-season evolution of snow-depth distribution when forced with inputs of vegetation type and topography, and atmospheric foreings of air temperature, humidity, wind speed and direction, and precipitation. Model outputs include the spatial and temporal evolution of snow depth resulting from variations in precipitation, saltation and suspension transport, and sublimation. Using 4 years of snow-depth distribution observations from the foothills north of the Brooks Range in Arctic Alaska, the model is found to simulate closely the observed snow-depth distribution patterns and the interannual variability.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-01-01
    Description: Measurements from the subarctic snowpack are used to explore the relationship between grain growth and vapor flow, the fundamental processes of dry-snow metamorphism. Due to extreme temperature gradients, the subarctic pack undergoes extensive depth-hoar metamorphism. By the end of the winter a five-layered structure with a pronounced weak layer near the base of the snow evolves. Grain-size increases by a factor of 2–3. while the number of grains per unit mass decreases by a factor of 10. Observed growth rates require significant net inter-particle vapor fluxes. Stable-isotope ratios show that there are also significant net layer-to-layer vapor fluxes. Soil moisture enters the base of the pack and mixes with the bottom 10 cm of snow, while isotopically light water vapor fractionates from the basal layer and is deposited up to 50 cm higher in the pack. End-of-winter density profiles for snow on the ground, compared with snow on tables, indicate the net layer-to-layer vapor flux averages 6 x 10−7 kg m−2 s−1, though detailed measurements show the net flux is episodic and varies with time and height in the pack, with peak net fluxes ten limes higher than average. A model, driven by observed temperature profiles, reproduces the layer-to-layer flux pattern and predicts the observed weak layer at the base of the snow. Calculated layer-to-layer vapor fluxes are ten times higher than inter-particle fluxes, which implies that depth-hoar grain growth is limited by factors other than the vapor supply. This finding suggests that gain and loss of water molecules due to sublimation from grains takes place at a rate many times higher than the rate at which grains grow, and it explains why grains can metamorphose into different forms so readily.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-01-01
    Description: As part of the winter environment in middle- and high-latitude regions, the interactions between wind, vegetation, topography and snowfall produce snow covers of non-uniform depth and snow water-equivalent distribution. A physically based numerical snow-transport model (SnowTran-3D) is developed and used to simulate this three-dimensional snow-depth evolution over topographically variable terrain. The mass-transport model includes processes related to vegetation snow-holding capacity, topographic modification of wind speeds, snow-cover shear strength, wind-induced surface-shear stress, snow transport resulting from saltation and suspension, snow accumulation and erosion, and sublimation of the blowing and drifting snow. The model simulates the cold-season evolution of snow-depth distribution when forced with inputs of vegetation type and topography, and atmospheric foreings of air temperature, humidity, wind speed and direction, and precipitation. Model outputs include the spatial and temporal evolution of snow depth resulting from variations in precipitation, saltation and suspension transport, and sublimation. Using 4 years of snow-depth distribution observations from the foothills north of the Brooks Range in Arctic Alaska, the model is found to simulate closely the observed snow-depth distribution patterns and the interannual variability.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-01-01
    Description: Measurements from the subarctic snowpack are used to explore the relationship between grain growth and vapor flow, the fundamental processes of dry-snow metamorphism. Due to extreme temperature gradients, the subarctic pack undergoes extensive depth-hoar metamorphism. By the end of the winter a five-layered structure with a pronounced weak layer near the base of the snow evolves. Grain-size increases by a factor of 2–3. while the number of grains per unit mass decreases by a factor of 10. Observed growth rates require significant net inter-particle vapor fluxes. Stable-isotope ratios show that there are also significant net layer-to-layer vapor fluxes. Soil moisture enters the base of the pack and mixes with the bottom 10 cm of snow, while isotopically light water vapor fractionates from the basal layer and is deposited up to 50 cm higher in the pack. End-of-winter density profiles for snow on the ground, compared with snow on tables, indicate the net layer-to-layer vapor flux averages 6 x 10−7kg m−2s−1, though detailed measurements show the net flux is episodic and varies with time and height in the pack, with peak net fluxes ten limes higher than average. A model, driven by observed temperature profiles, reproduces the layer-to-layer flux pattern and predicts the observed weak layer at the base of the snow. Calculated layer-to-layer vapor fluxes are ten times higher than inter-particle fluxes, which implies that depth-hoar grain growth is limited by factors other than the vapor supply. This finding suggests that gain and loss of water molecules due to sublimation from grains takes place at a rate many times higher than the rate at which grains grow, and it explains why grains can metamorphose into different forms so readily.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-01-01
    Description: Twenty-seven studies on the thermal conductivity of snow (Keff) have been published since 1886. Combined, they comprise 354 values ofKeff, and have been used to derive over 13 regression equation and predictingKeffvs density. Due to large (and largely undocumented) differences in measurement methods and accuracy, sample temperature and snow type, it is not possible to know what part of the variability in this data set is the result of snow microstructure. We present a new data set containing 488 measurements for which the temperature, type and measurement accuracy are known. A quadratic equation,whereρis in g cm−3, andKeffis in W m−1K−1, can be fit to the new data (R2= 0.79). A logarithmic expression,can also be used. The first regression is better when estimating values beyond the limits of the data; the second when estimating values for low-density snow. Within the data set, snow types resulting from kinetic growth show density-independent behavior. Rounded-grain and wind-blown snow show strong density dependence. The new data set has a higher mean value of density but a lower mean value of thermal conductivity than the old set. This shift is attributed to differences in snow types and sample temperatures in the sets. Using both data sets, we show that there are well-defined limits to the geometric configurations that natural seasonal snow can take.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-01-01
    Description: Twenty-seven studies on the thermal conductivity of snow (Keff) have been published since 1886. Combined, they comprise 354 values of Keff, and have been used to derive over 13 regression equation and predicting Keff vs density. Due to large (and largely undocumented) differences in measurement methods and accuracy, sample temperature and snow type, it is not possible to know what part of the variability in this data set is the result of snow microstructure. We present a new data set containing 488 measurements for which the temperature, type and measurement accuracy are known. A quadratic equation,where ρ is in g cm−3, and Keff is in W m−1K−1, can be fit to the new data (R2 = 0.79). A logarithmic expression,can also be used. The first regression is better when estimating values beyond the limits of the data; the second when estimating values for low-density snow. Within the data set, snow types resulting from kinetic growth show density-independent behavior. Rounded-grain and wind-blown snow show strong density dependence. The new data set has a higher mean value of density but a lower mean value of thermal conductivity than the old set. This shift is attributed to differences in snow types and sample temperatures in the sets. Using both data sets, we show that there are well-defined limits to the geometric configurations that natural seasonal snow can take.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-05-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-01-01
    Description: In a recent paper (Sturm and others, 1995), a global seasonal snow-cover classification system was developed with each class defined by snow properties like grain-size and type. Here, characteristic bulk density vs time curves are assigned to three classes using snow-course data from Alaskan and Canadian sites. Within each class, curves have similar slopes and intercepts but between classes they are different. The relationship between slope, intercept and snow rheology has been investigated using a finite-difference model in which snow layers are assumed to behave as viscous fluids. Using observed slopes, the density-dependent compactive viscosity of each class has been determined. These are consistent with published values. Results indicate that load and load history are less important to the compaction behavior than grain and bond characteristics, snow temperature and wetness. The study suggests that differences in compaction behavior arise primarily from differences in rheology, the result of climatically controlled differences in the character of the snow. This finding explains why regional snow densities have been successfully predicted from air temperature and wind speed alone, without considering snow depth.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-01-01
    Description: In a recent paper (Sturm and others, 1995), a global seasonal snow-cover classification system was developed with each class defined by snow properties like grain-size and type. Here, characteristic bulk density vs time curves are assigned to three classes using snow-course data from Alaskan and Canadian sites. Within each class, curves have similar slopes and intercepts but between classes they are different. The relationship between slope, intercept and snow rheology has been investigated using a finite-difference model in which snow layers are assumed to behave as viscous fluids. Using observed slopes, the density-dependent compactive viscosity of each class has been determined. These are consistent with published values. Results indicate that load and load history are less important to the compaction behavior than grain and bond characteristics, snow temperature and wetness. The study suggests that differences in compaction behavior arise primarily from differences in rheology, the result of climatically controlled differences in the character of the snow. This finding explains why regional snow densities have been successfully predicted from air temperature and wind speed alone, without considering snow depth.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...