ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of plant growth regulation 15 (1996), S. 167-171 
    ISSN: 1435-8107
    Keywords: Campanula ; Stem elongation ; Endogenous GAs ; GA application ; Internode elongation ; Thermoperiodicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of day/night temperature regimes on stem elongation and on the content of endogenous gibberellins (GAs) in vegetatively propagated plants of Campanula isophylla cv. Hvit have been studied. Compared with a constant temperature regime at 18°C (18/18°C), stem and internode elongation was enhanced significantly by a combination of high day/low night temperature (21/15°C) and inhibited by an opposite regime (15/21°C). Gibberellins A1, A19, A44, A53, and A97 were identified as endogenous components in Campanula. (GA97 was earlier referred to as 2β-OH-GA53.) Quantitative analysis of the endogenous GAs indicates that temperature regimes that stimulate elongation growth are accompanied by an increase in the level of GA1, GA19, and GA44. On the other hand, in plants grown under conditions that reduced stem elongation growth, there was an increased level of GA97.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-8107
    Keywords: Key Words.Begonia—Endogenous GAs—GA application—Photoperiod—Stem elongation—Thermoperiod
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. The effects of thermo- and photoperiodicity on elongation growth and on endogenous level of gibberellins (GAs) in Begonia x hiemalis during various phases of the day-night cycle have been studied. Plant tissue was harvested during the day and night cycle after temperature and photoperiodic treatments and analyzed for endogenous GAs using combined gas chromatography and mass spectrometry. Elongation growth increased when the difference between day and night temperature (DIF = DT − NT) increased from a negative value (−9.0 and −4.5°C) to zero and with increasing photoperiod from 8 to 16 h. When applied to the youngest apical leaf, gibberellins A1, A4, and A9 increased the elongation of internodes and petioles. GA4 had a stronger effect on elongation growth than GA1 and GA9. In relative values, the effect of these GAs decreased when DIF increased from −9 to 0°C. The time of applying the GAs during a day and night cycle had no effect on the growth responses. In general, endogenous levels of GA19 and GA20 were higher under negative DIF compared with zero DIF. The level of endogenous GA1 in short day (SD)-grown plants was higher under zero DIF than under negative DIF, but this relationship did not appear in long day (LD)-grown plants. The main effects of photoperiod seem to be a higher level of GA19 and GA1 at SD compared with LD, whereas GA20 and GA9 show the opposite response to photoperiod. No significant differences in endogenous level of GA1, GA9, GA19, and GA20 were found for various time points during the diurnal day and night cycle. Endogenous GA20 was higher in petiole and leaf compared with stem, whereas there were no differences of GA1, GA9, and GA19 between plant parts. No clear relationship was found between elongation of internodes and petioles and levels of endogenous GAs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of plant growth regulation 17 (1998), S. 161-167 
    ISSN: 1435-8107
    Keywords: Key Words. DIF—Gibberellin—Inactivation—Pea—Response—Stem elongation—Temperature—Thermoperiodism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. The application of gibberellins (GA) reduces the difference in stem elongation observed under a low day (DT) and high night temperature (NT) combination (negative DIF) compared with the opposite regime, a high DT/low NT (positive DIF). The aim of this work was to investigate possible thermoperiodic effects on GA metabolism and tissue sensitivity to GA by comparing the response to exogenously applied GA (in particular, GA1 and GA3) in pea plants (Pisum sativum cv. Torsdag) grown under contrasting DIF. Control plants not treated with growth inhibitors or additional GA were 38% shorter under negative (DT/NT 13/21°C) than positive DIF (DT/NT 21/13°C) because of shorter internodes. Additional GA1 or GA3 decreased the difference between positive and negative DIF. In pea plants dwarfed with paclobutrazol, which inhibits GA biosynthesis at an early step, the response to GA1 was reduced more strongly by negative compared with positive DIF than the response to GA3. The induced stem elongation by GA19 and GA20 did not deviate significantly from the response to GA1. Plants treated with prohexadione-calcium, an inhibitor of both the production and the inactivation of GA1, grew equally tall under the two temperature regimes in response to both GA1 and GA3. We hypothesize that the reduced response to GA1 compared with GA3 in paclobutrazol-treated plants grown under negative DIF is caused by a higher rate of 2β-hydroxylation of GA1 into GA8 under negative than positive DIF. This contributes to lower levels of GA1 and consequently shorter stems and internodes in pea plants grown under negative than positive DIF. Differences in tissue sensitivity to GA alone cannot account for this specific thermoperiodic effect on stem elongation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5087
    Keywords: BX-112 ; endogenous ; GAs ; growth retardant ; thermoperiodism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aim of this study was to investigate the role of plant hormones, particularly the gibberellins (GAs), in the thermoperiodic regulation of stem elongation in the short day plant (SDP) Begonia x hiemalis. Effects of GAs and some GA precursors were tested on plants grown under alternating day/night temperatures (DT/NT; 12/12 h), and the effects of these temperature regimes on endogenous plant hormones were analyzed using combined gas chromatography and mass spectrometry (GC-MS). Compared with constant temperatures (19/19 °C; 21/21 °C), stem elongation was significantly inhibited by low DT/high NT (14/24 °C; 18/24 °C) and enhanced by the opposite treatments (24/14 °C; 26/17 °C). GA1 stimulated elongation of internodes and petioles while ent-kaurene, kaurenoic acid, GA12, GA19, GA20 had no significant effect. The effect of GA1 was enhanced by a simultaneous application of calcium 3,5-dioxo-4-propionylcyclohexanecarboxylate (BX-112). BX-112 inhibited internode elongation at high DT/low NT (24/14 °C) but not at the reverse temperature regime. Gibberellins A53, A19, A20, A1, A4, A9, and indoleacetic acid (IAA), were identified by GC-MS from both leaves, including the petioles, and stems of B. x hiemalis. There were no apparent relationships between elongation of internodes and petioles and endogenous contents of gibberellins A53, A19, A20, and A1. Recoveries of deuterated GA4 and GA9 were generally too low for estimation of endogenous levels of these GAs. Constant temperature resulted in more open flowers and flower buds compared to alternating DT and NT. BX-112 decreased the time to anthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...