ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 11 (1998), S. 305-322 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract: We investigate the stability of a barotropic vorticity monopole whose stream function is a Gaussian function of the radial coordinate. The model is based on the inviscid Boussinesq equations. The vortex is assumed to exist on an $f$-plane, in an environment with constant, stable density stratification. In the unstratified, nonrotating case, we find growth rates that increase monotonically with increasing vertical wave number, the so-called “ultraviolet catastrophe” characteristic of symmetric instability. This type of instability leads to rapid turbulent collapse of the vortex, possibly accompanied by wave radiation. In the limit of strong background stratification and rotation, the vortex exhibits a scale-selective instability which leads to the formation of stable lenses. The transition between these two regimes is sharp, and coincides approximately with the centrifugal stability boundary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-06-01
    Print ISSN: 0935-4964
    Electronic ISSN: 1432-2250
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-04
    Description: Many models of the large-scale thermohaline circulation in the ocean exhibit strong zonally integrated upwelling in the midlatitude North Atlantic that significantly decreases the amount of deep water that is carried from the formation regions in the subpolar North Atlantic toward low latitudes and across the equator. In an analysis of results from the Community Modeling Effort using a suite of models with different horizontal resolution, wind and thermohaline forcing, and mixing parameters, it is shown that the upwelling is always concentrated in the western boundary layer between roughly 30° and 40°N. The vertical transport across 1000 m appears to be controlled by local dynamics and strongly depends on the horizontal resolution and mixing parameters of the model. It is suggested that in models with a realistic deep-water formation rate in the subpolar North Atlantic, the excessive upwelling can be considered as the prime reason for the typically too low meridional overturning rates and northward heat transports in the subtropical North Atlantic. A new isopycnal advection and mixing parameterization of tracer transports by mesoscale eddies yield substantial improvements in these integral measures of the circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...