ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 26 (1996), S. 531-531 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-10-01
    Print ISSN: 0169-6149
    Electronic ISSN: 1573-0875
    Topics: Biology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2011-08-24
    Description: The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.
    Keywords: Meteorology and Climatology
    Type: Science (ISSN 0036-8075); Volume 272; 5263; 846-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.
    Keywords: Meteorology and Climatology
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 21; 11; 1455-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A Mars surface lander Gas Chromatograph Mass Spectrometer (GCMS) is described to measure the chemical composition of abundant and trace volatile species and isotope ratios for noble gases and other elements. These measurements are relevant to the study of atmospheric evolution and past climatic conditions. A Micromission plan is under study where a surface package including a miniaturized GCMS would be delivered to the surface by a solar heated hot air balloon based system. The balloon system would be deployed about 8 km above the surface of Mars, wherein it would rapidly fill with Martian atmosphere and be heated quickly by the sun. The combined buoyancy and parachuting effects of the solar balloon result in a surface package impact of about 5 m/sec. After delivery of the package to the surface, the balloon would ascend to about 4 km altitude, with imaging and magnetometry data being taken for the remainder of the daylight hours as the balloon is blown with the Martian winds. Total atmospheric entry mass of this mission is estimated to be approximately 50 kg, and it can fit as an Ariane 5 piggyback payload. The GCMS would obtain samples directly from the atmosphere at the surface and also from gases evolved from solid phase material collected from well below the surface with a Sample Acquisition and Transport Mechanism (SATM). The experiment envisioned in the Mars Micromission described would obtain samples from a much greater depth of up to one meter below the surface, and would search for organic molecules trapped in ancient stratified layers well below the oxidized surface. Insitu instruments on upcoming NASA missions working in concert with remote sensing measurement techniques have the potential to provide a more detailed investigation of mineralogy and the extent of simple volatiles such as CO2 and H2O in surface and subsurface solid phase materials. Within the context of subsequent mission opportunities such as those provided by the Ariane 5 piggyback payload based Micromissions, it is essential to implement an even broader chemical analysis and to enable a significant extension of previous isotope measurements. Such a development would enhance the presently very active study of questions of atmospheric evolution and loss and past climatic conditions. The method selected to implement this program can be based on well-established mass spectrometry techniques. Sampled gas is chemically and physically processed to separate the gas mixture into components using gas chromatograph and related enrichment techniques. This allows trace species to be identified and reveals isotopic distributions in many cases with improved precision. Samples of interest, such as organic molecules, may lie deep below the highly oxidized surface layer and the suggested program includes enhanced sampling techniques to measure volatiles preserved in solid phase material deep below the surface as well as gas from the well mixed atmosphere.
    Keywords: Instrumentation and Photography
    Type: Mars Exploration Programme and Sample Return Missions Symposium; Feb 01, 1999 - May 01, 1999; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The Dipper satellite will carry out an unprecedented, systematic, and focused in-situ exploration of the Earth's lower ionosphere and thermosphere below 200 km that will produce a pivotal base of knowledge that will significantly advance our understanding of knowledge that will significantly advance our understanding of how our near-space environment works. The satellite will carry comprehensive in-situ probes to measure vector electric and magnetic fields, plasma density and temperature, ion velocities, ion and neutral composition and winds, energetic particles including suprathermal electrons, gravity waves, and lightning bursts. The satellite will include a propulsion system and tapered body that will provide over 10,000 excursions to altitudes below 200 km with over 3000 dips to altitudes below 150 km. With this instrument complement, spacecraft, and orbit, the Dipper mission will gather the necessary combined electrodynamics and neutral dynamics measurements to provide an understanding of the Earth's critical boundary region where the ionized gases of space and the neutral gases of the atmosphere are coupled, and where impinging forces and momentum are deposited from the magnetosphere above and from the troposphere, stratosphere, and mesosphere below. In exploring those physical processes in the lower ionosphere which can only be measured in-situ, the Dipper mission addresses four main science objectives. The Dipper will: 1) reveal how ion-neutral coupling creates a global system of dynamo electric fields and currents; 2) provide first-hand understanding of how magnetospheric currents close in the ionosphere and reveal the effects on the upper atmosphere of magnetospheric energy and momentum deposition; 3) discover the degree of upwards coupling and energy deposition due to thunderstorm electric fields and determine their significance; 4) determine the dynamics and composition of the Earth's lower thermosphere, including its response to gravity, tidal, and planetary waves on a range of spatial scales. A proposal to design, build, operate, and analyze data from instruments on the Dipper spacecraft within the schedule and budget constraints of NASA's MIDEX program was submitted to NASA in 1998. This presentation summarizes the main features of the mission.
    Keywords: Geophysics
    Type: American Geophysical Union Fall Meeting; Jan 01, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: New laboratory studies employing the Engineering Unit (EU) of the Galileo Probe Mass Spectrometer (GPMS) have resulted in a substantial reduction in the previously reported upper limit on the ammonia mixing ratio derived from the GPMS experiment at Jupiter. This measurement is complicated by background ammonia contributions in the GPMS during direct atmospheric sampling produced from the preceding gas enrichment experiments. These backgrounds can be quantified with the data from the EU studies when they are carried out in a manner that duplicates the descent profile of pressure and enrichment cell loading. This background is due to the tendency of ammonia to interact strongly with the walls of the mass spectrometer and on release to contribute to the gas being directly directed into the ion source from the atmosphere through a capillary pressure reduction leak. It is evident from the GPMS and other observations that the mixing ratio of ammonia at Jupiter reaches the deep atmosphere value at substantially higher pressures than previously assumed. This is a likely explanation for the previously perceived discrepancy between ammonia values derived from ground based microwave observations and those obtained from attenuation of the Galileo Probe radio signal.
    Keywords: Lunar and Planetary Exploration
    Type: Division of Planetary Sciences; Oct 10, 1999 - Oct 15, 1999; Padua; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...