ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (6)
  • 1
    Publication Date: 2019-06-28
    Description: An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.
    Keywords: AERODYNAMICS
    Type: NASA-CR-195050 , NAS 1.26:195050
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.
    Keywords: Computer Programming and Software
    Type: AIAA Paper 99-2669 , 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jun 20, 1999 - Jun 23, 1999; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: An experimental investigation was performed in the NASA Langley 16-Foot Transonic Tunnel to determine the aerodynamic effects of external convolutions, placed on the boattail of a nonaxisymmetric nozzle for drag reduction. Boattail angles of 15 and 22 were tested with convolutions placed at a forward location upstream of the boattail curvature, at a mid location along the curvature and at a full location that spanned the entire boattail flap. Each of the baseline nozzle afterbodies (no convolutions) had a parabolic, converging contour with a parabolically decreasing corner radius. Data were obtained at several Mach numbers from static conditions to 1.2 for a range of nozzle pressure ratios and angles of attack. An oil paint flow visualization technique was used to qualitatively assess the effect of the convolutions. Results indicate that afterbody drag reduction by convoluted contouring is convolution location, Mach number, boattail angle, and NPR dependent. The forward convolution location was the most effective contouring geometry for drag reduction on the 22 afterbody, but was only effective for M 〈 0.95. At M = 0.8, drag was reduced 20 and 36 percent at NPRs of 5.4 and 7, respectively, but drag was increased 10 percent for M = 0.95 at NPR = 7. Convoluted contouring along the 15 boattail angle afterbody was not effective at reducing drag because the flow was minimally separated from the baseline afterbody, unlike the massive separation along the 22 boattail angle baseline afterbody.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 99-2670 , 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jun 20, 1999 - Jun 24, 1999; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to study a passive cavity concept for improving the off-design performance of fixed-geometry exhaust nozzles. Passive cavity ventilation (through a porous surface) was applied to divergent flap surfaces and tested at static conditions in a sub-scale, nonaxisymmetric, convergent-divergent nozzle. As part of a comprehensive investigation, force, moment and pressure measurements were taken and focusing schlieren flow visualization was obtained for a baseline configuration and D passive cavity configurations. All tests were conducted with no external flow and high-pressure air was used to simulate jet-exhaust flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable shock-induced boundary-layer separation at off-design conditions, which came about through the natural tendency of overexpanded exhaust flow to satisfy conservation requirements by detaching from the nozzle divergent flaps. Passive cavity ventilation added the ability to control off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. Separation alleviation offers potential for installed nozzle performance benefits by reducing drag at forward flight speeds, even though it may reduce off-design static thrust efficiency as much as 3.2 percent. Encouraging stable separation of the exhaust flow offers significant performance improvements at static, low NPR and low Mach number flight conditions by improving off-design static thrust efficiency as much as 2.8 percent. By designing a fixed-geometry nozzle with fully porous divergent flaps, where both cavity location and percent open porosity of the flaps could be varied, passive flow control would make it possible to improve off-design nozzle performance across a wide operating range. In addition, the ability to encourage separation on one flap while alleviating it on the other makes it possible to generate thrust vectoring in the nozzle through passive flow control.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-111589 , NAS 1.15:111589 , AIAA Paper 96-2541 , Joint Propulsion Conference; Jul 01, 1996 - Jul 03, 1996; Lake Buena Vista, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the effects of convoluted divergent-flap contouring on the internal performance of a fixed-geometry, nonaxisymmetric, convergent-divergent exhaust nozzle. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and four convoluted configurations. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at overexpanded conditions. Convoluted configurations were found to significantly reduce, and in some cases totally alleviate separation at overexpanded conditions. This result was attributed to the ability of convoluted contouring to energize and improve the condition of the nozzle boundary layer. Separation alleviation offers potential for installed nozzle aeropropulsive (thrust-minus-drag) performance benefits by reducing drag at forward flight speeds, even though this may reduce nozzle thrust ratio as much as 6.4% at off-design conditions. At on-design conditions, nozzle thrust ratio for the convoluted configurations ranged from 1% to 2.9% below the baseline configuration; this was a result of increased skin friction and oblique shock losses inside the nozzle.
    Keywords: Aerodynamics
    Type: NASA/TP-1999-209093 , L-17696 , NAS 1.60:209093
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.
    Keywords: Aerodynamics
    Type: NASA/TM-1999-209513 , NAS 1.15:209513 , L-17879
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...