ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 6046-6056 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new method for approximate solution of the time-dependent vibrational Schrödinger equation, applicable to extended molecular systems, is presented. The new method is essentially an approximate time-dependent quantization of classical dynamics. A molecular dynamics simulation is used to obtain a separable, effective time-dependent potential for each mode, that implicitly includes also the effects of all the other modes on this degree of freedom. A time-dependent wave packet is then propagated separately for each mode, using the corresponding effective potential. The new approximation is valid for short time scale processes only, but it is easily applicable to large realistic systems. Test calculations against exact quantum and time-dependent self-consistent field (TDSCF) results are carried out for two examples; photodissociation of HI in the collinear Xe...HI cluster, and electron photodetachment from the collinear Ar...I−...Ar cluster. For illustration, the new scheme is also applied to photodetachment from large linear clusters Arn...I−...Arn (n=2–8) and the results are discussed. For the test systems, the results of the new method are virtually identical to those following from the computationally much more demanding TDSCF approach, and they are in excellent agreement with the exact results. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 8855-8864 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A recently developed method for time-dependent quantum simulations of large systems on short time scales is applied to the dynamics following electron photodetachment from the clusters I−(Ar)2 and I−(Ar)12. The problem is treated in full dimensionality, incorporating all vibrational degrees of freedom, by the classically based separable potential (CSP) approach. This is essentially an approximate time-dependent quantization of classical dynamics: Classical molecular dynamics is used to generate effective, single mode separable time-dependent potentials for each degree of freedom. The quantum dynamics is then propagated separately for each mode, using the effective potentials that implicitly include effects such as energy transfer between the modes. In the current application of the CSP method we calculate properties relevant for the interpretation of spectroscopies, such as correlation functions of wave packets, as well as time-dependent atom–atom distribution functions, pertinent to future diffraction experiments using ultrafast pulses. The insight obtained from the quantum dynamics of these clusters is discussed. In particular, light is thrown on the differences in the dynamics associated with the system landing on the three different electronic surfaces of the neutral I(2P)⋅(Ar)n system. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 4056-4062 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The dissociation dynamics of the cluster Li(H2)2, following the 2s→2p excitation of the Li atom, is studied in the framework of a collinear model. The process was investigated by exact quantum wave packet calculations, and the results were used to test a hybrid quantum/classical method, in which the highly quantum mechanical initial state of the cluster is described by a wave function, and the latter is used to sample initial positions and momenta for a classical treatment of the excited state dynamics. We found that the dynamics was dominated by two predissociation processes, Li*(H2)2→Li*–H2+H2 and Li*(H2)2→Li*+(H2)2, with the latter process having a higher yield. A relatively long dissociation lifetime, ∼10 ps, was found for the excited cluster. The slow vibrational predissociation rate was interpreted as due to the very low density of state involved. The hybrid quantum/classical approach was found to give product vibrational energy and velocity distributions in good accord with the distribution from exact calculation. However, the lifetimes from the hybrid approach were found to be much shorter than those from the exact quantum calculations. The hybrid approach is thus applicable even to photoexcitation of quantum clusters for studying certain selected properties. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 1823-1829 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An algorithm for first-principles calculation of vibrational spectroscopy of polyatomic molecules is proposed, which combines electronic ab initio codes with the vibrational self-consistent field (VSCF) method, and with a perturbation-theoretic extension of VSCF. The integrated method directly uses points on the potential energy surface, computed from the electronic ab initio code, in the VSCF part. No fitting of an analytic potential function is involved. A key element in the approach is the approximation that only interactions between pairs of normal modes are important, while interactions of triples or more can be neglected. This assumption was found to hold well in applications. The new algorithm was applied to the fundamental vibrational excitations of H2O, Cl−(H2O), and (H2O)2, using the Möller–Plesset method for the electronic structure. The vibrational frequencies found are in very good accord with experiments. Estimates suggest that this electronic ab initio/VSCF approach should be feasible, with reasonable computational resources, for all-mode calculations of vibrational energies and wave functions for systems of up to 10–15 atoms. The new method can be also very useful for testing the accuracy of electronic structure codes by comparing with experimental vibrational spectroscopy. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 11047-11053 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation of HCl adsorbed on the surface of an Ar12 cluster is studied by semiclassical molecular dynamics simulations, using a surface-hopping approach for the nonadiabatic transitions. The DIM method is used to construct the 12 potential energy surfaces that are involved, and the nonadiabatic couplings. The results are compared with previous studies on HCl embedded inside Ar clusters and on the triatomic Ar–HCl cluster. The main findings are the following: (1) There is a yield of about 1% for recombination onto the ground electronic state of HCl, roughly the same as for HCl embedded inside Ar12. (2) Photodissociation lifetimes much longer than for Ar–HCl are found. (3) The kinetic energy distribution of the H atom shows large energy transfer to the cluster, greater than in the case of HCl in the embedded geometry in (Ar)12HCl. (4) An interesting mechanism leads to the formation of some fraction of very "hot" Cl atoms. (5) About 10% of the Cl is left trapped in (Ar)mCl clusters. (6) The branching ratio P1/2:P3/2 for the Cl atoms that leave the cluster shows electronic cooling compared to the isolated HCl molecule case. The results throw light on the role of local geometry in photodissociation/recombination processes, and in particular on the mechanisms pertinent in the case of surface-adsorbed species. The nature of the results, showing strong cage effects at the surface geometries is to a large extent a consequence of the encapsulation of the H atom, obtained for the structure of the (Ar)12HCl cluster. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 5803-5814 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Quantum simulations are reported for the dynamics following the photoexcitation Ba(1S)→Ba(1P) in Ba(Ar)10 and Ba(Ar)20 clusters. The evolution in time is studied in a framework that treats quantum-mechanically all the coupled degrees of freedom. The focus is on the role of nonadiabatic transitions between the three adiabatic surfaces corresponding to the P states of the Ba atom. The time scales of electronic relaxation and of electronic depolarization (orbital reorientation) are computed, and the competition between adiabatic and nonadiabatic effects is assessed. The calculations are carried out by a new scheme that extends the recent classically based separable potential method. Semiclassical surface-hopping simulations are used to produce effective single-mode potentials on which nuclear "orbitals'' are then generated. The full wave packet is constructed from the electronic states involved, and from these nuclear wave functions. Among the main results we find that nonadiabatic transitions become appreciable around 1 ps after photoexcitation, and they are stronger in the smaller cluster. Comparing Tully's semiclassical method with the quantum simulations, good qualitative agreement is found. Quantitatively, the semiclassical predictions for the electronic states branching rations deviate from the quantum results roughly by a factor of 2 after 1 ps. In the smaller cluster direct dissociation of the Ba atom dominates over energy redistribution within the cluster, the opposite being true for the large system. This example demonstrates the feasibility of quantum simulations of nonadiabatic processes in large systems with the new method. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 10682-10690 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The vibrational ground state and the fundamental excited states of (Ar)13 were studied by vibrational self-consistent field (VSCF) calculations. These calculations treat the interaction between different modes through a mean potential approximation, and incorporate anharmonicity in full. The good accuracy of VSCF for such systems was demonstrated by test calculations for (Ar)3 and other clusters. The study of (Ar)13 focused on the properties of the wave functions and the excitation energies, on the role of the coupling between the modes and on the deviation from the harmonic approximation. It was found that SCF excitation energies for the fundamental transitions differ from the harmonic values by about 25% for the softest modes, and by about 10% for the stiffest modes. Coupling between the modes, treated by SCF, was found to be much more important than the intrinsic anharmonicity of the individual modes. For the ground state, the harmonic wave function compares well with VSCF, but for the fundamental excited states appreciable differences were found. The results for a potential field expanded to fourth-order polynomial in the normal mode displacements are found to be valid, almost indentical with those for a more elaborate sixth-order polynomial expansion. The fundamental excitation frequencies computed using the Aziz–Slaman Ar–Ar pair potential are very similar, with some quantitative deviations, to the values obtained with a Lennard-Jones potential. The differences are larger for certain specific modes, and very small for the others. These calculations demonstrate the computational power of VSCF as a tool for quantum-mechanical calculations for large clusters, at the level of specific wave functions. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 10332-10348 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Vibrational energy levels, wave functions, and ir absorption intensities are computed for (H2O)n clusters with n=2, 3, 4, and 5. The calculations were carried out by the vibrational self-consistent field (VSCF) approximation, with corrections for correlations between the modes by perturbation theory. This correlation corrected VSCF (CC-VSCF) is analogous to the familiar Möller–Plesset method in electronic structure theory. Test calculations indicate that this method is of very good accuracy also for very anharmonic systems. While the method is of highest relative accuracy for the stiffest modes, it works very well also for the soft ones. Some of the main results are (1) the frequencies calculated are in good but incomplete agreement with experimental data available for some of the intramolecular mode excitations. The deviations are attributed to the inaccuracy of the coupling between intramolecular and intermolecular modes for the potential function used. (2) Insight is gained into the pattern of blue- or redshifts from the corresponding harmonic excitation energies for the various modes. (3) Anharmonic coupling between the modes dominates in general over the intrinsic anharmonicity of individual modes in determining the spectrum. (4) The anharmonic corrections to the frequencies of some intermolecular modes (shearing, torsional) are extremely large, and exceed 100% or more in many cases. (5) An approximation of quartic potential field in the normal mode displacement is tested for the clusters. It works well for the high and intermediate frequency modes, but is in error for very soft shearing and torsional modes. (6) The relative errors of the VSCF approximation are found to decrease with the cluster size. This is extremely encouraging for calculations of large clusters, since the VSCF level is computationally simple. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 8747-8750 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A semiempirical model is developed, based on ab initio calculations, to provide an analytic representation of excited-state potential energy surfaces for (H2O)n, n=2–6. Using quantum calculations of the ground vibrational states, the UV absorption spectra are computed by a semiclassical approximation, showing a strong blue-shift with extended blue tails relative to the monomer, but with an additional red tail in the case of the dimer absorption band. The nature of the excitonic states is discussed. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 9332-9339 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The early quantum dynamics following the B(3Π0u+)←X photoexcitation of I2 in large rare gas clusters is studied and the resonance Raman spectrum of these systems is calculated by a novel time-dependent quantum mechanical simulation approach. The method used is the classically based separable potential (CSP) approximation, in which classical molecular dynamics simulations are used in a first step to determine an effective time-dependent separable potential for each mode, then followed by quantum wavepacket calculations using these potentials. In the simulations for I2(Ar)n and I2(Xe)n, with n=17, 47, all the modes are treated quantum mechanically. The Raman overtone intensities are computed from the multidimensional time-dependent wavepacket for each system, and the results are compared with experimental data on I2 in Ar matrices and in liquid Xe. The main findings include: (i) Due to wavepacket dephasing effects the Raman spectra are determined well before the iodine atoms hit the rare gas "wall'' at about 80 fs after photoexcitation. (ii) No recurrencies are found in the correlation functions for I2(Ar)n. A very weak recurrence event is found for I2(Xe)n. (iii) The simulations for I2(Ar)17 (first solvation layer) and for I2(Ar)47 (second solvation shell) show differences corresponding to moderate cluster size effects on the Raman spectra. (iv) It is estimated that coupling to the B″(1Π1u) state or to the a(1g) state have a small effect on the Raman intensities. (v) For I2(Ar)47, the results are in very good quantitative agreement with I2/Ar matrix experiments. The I2(Xe)n results are in qualitative agreement with experiments on I2 in liquid Xe. The reported calculations represent a first modeling of resonance Raman spectra by quantum dynamical simulations that include all degrees of freedom in large systems, and they demonstrate the power of the CSP method in this respect. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...