ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (104,185)
Collection
Language
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: AWI S2-99-0281
    Type of Medium: Monograph available for loan
    Pages: XXI, 299 S.
    Edition: Reprint.
    ISBN: 0521475740
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0028 ; 11/M 96.0038
    In: Reviews in mineralogy
    Description / Table of Contents: The Mineralogical Society of America sponsored a short course for which this was the text at Stanford University December 9 and 10, 1995, preceding the Fall Meeting of the American Geophysical Union and MSA in San Fransisco, with about 100 professionals and graduate students in attendance. A silicate melt phase is the essential component of nearly all igneous processes, with dramatic consequences for the properties of the Earth's interior. Throughout Earth history and continuing to the present day, silicate melts have acted as transport agents in the chemical and physical differentiation of the Earth into core, mantle and crust. The occurrence of such magmatic processes leads to the definition of our planet as "active," and the resulting volcanism has a profound impact on the Earth's atmosphere, hydrosphere and biosphere. Although near-surface melts are observed directly during volcanic eruptions, the properties of magmas deep within the Earth must be characterized and constrained by laboratory experiments. Many of these experiments are designed to aid in developing an atomic level understanding of the structure and dynamics of silicate melts under the P- T conditions of the Earth's crust and mantle, which will make extrapolation from the laboratory results to the behavior of natural magmas as reliable as possible. Silicate melts are also the archetypal glass-forming materials. Because of the ready availability of raw materials, and the ease with which molten silicates can be vitrified, commercial "glass" has necessarily implied a silicate composition, over most of the history of glass technology. The properties of the melt, or "slag" in metallurgical extractions, determine the nature of the glass formed, and the needs of the glass industry have provided much of the impetus for understanding the structure-property relations of molten silicates as well as for the glasses themselves. It is now recognized that any liquid might become glassy, if cooled rapidly enough, and understanding the thermodynamic and kinetic aspects of the glass transition, or passage between the liquid and glassy states of matter, has become a subject of intense interest in fundamental physics and chemistry. Glasses have also been studied in many geochemical investigations, often as substitutes for the high temperature melts, with the results being extrapolated to the liquid state. In many cases, in situ techniques for direct investigation of these refractory systems have only recently become available. Much valuable information concerning the melt structure has been gleaned from such studies. Nevertheless, there are fundamental differences between the liquid and glassy states. In liquids, the structure becomes progressively more disordered with increasing temperature, which usually gives rise to major changes in all thermodynamic properties and processes. These changes must, in general, be investigated directly by in situ studies at high temperature. Studies of glass only represent a starting point, which reflect a frozen image of the melt "structure" at the glass transition temperature. This is generally hundreds of degrees below the near-liquidus temperatures of greatest interest to petrologists. Since the early 1980s, a much deeper understanding of the structure, dynamics, and properties of molten silicates has been developed within the geochemical community, applying techniques and concepts developed within glass science, extractive metallurgy and liquid state physics. Some of these developments have far-reaching implications for igneous petrology. The purpose of this Short Course and volume is to introduce the basic concepts of melt physics and relaxation theory as applied to silicate melts, then to describe the current state of experimental and computer simulation techniques for exploring the detailed atomic structure and dynamic processes which occur at high temperature, and finally to consider the relationships between melt structure, thermodynamic properties and rheology within these liquids. These fundamental relations serve to bridge the extrapolation from often highly simplified melt compositions studied in the laboratory to the multicomponent systems found in nature. This volume focuses on the properties of simple model silicate systems, which are usually volatile-free. The behavior of natural magmas has been summarized in a previous Short Course volume (Nicholls and Russell, editors, 1990: Reviews in Mineralogy, Vol. 24), and the effect of volatiles on magmatic properties in yet another (Carroll and Holloway, editors, 1994: Vol. 30). In the chapters by Moynihan, by Webb and Dingwell, and by Richet and Bottinga, the concepts of relaxation and the glass transition are introduced, along with techniques for studying the rheology of silicate liquids, and theories for understanding the transport and relaxation behavior in terms of the structure and thermodynamic properties of the liquid. The chapter by Dingwell presents applications of relaxation-based studies of melts in the characterization of their properties. Chapters by Stebbins, by Brown, Farges and Calas, and by McMillan and Wolf present the principal techniques for studying the melt structure and atomic scale dynamics by a variety of spectroscopic and diffraction methods. Wolf and McMillan summarize our current understanding of the effects of pressure on silicate glass and melt structure. Chapters by Navrotsky and by Hess consider the thermodynamic properties and mixing relations in simple and multicomponent aluminosilicate melts, both from a fundamental structural point of view and empirical chemical models which can be conveniently extrapolated to natural systems. The chapter by Chakraborty describes the diffusivity of chemical species in silicate melts and glasses, and the chapter by Poole, McMillan and Wolf discusses the application of computer simulation methods to understanding the structure and dynamics of molten silicates. The emphasis in this volume is on reviewing the current state of knowledge of the structure, dynamics and physical properties of silicate melts, along with present capabilities for studying the molten state under conditions relevant to melting within the Earth, with the intention that these techniques and results can then be applied to understanding and modeling both the nature of silicate melts and the role of silicate melts in nature.
    Type of Medium: Monograph available for loan
    Pages: xv, 616 S.
    ISBN: 0-939950-39-1 , 978-0-939950-39-3
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 32
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Structural Relaxation and the Glass Transition by Cornelius T. Moynihan, p. 1 - 20 Chapter 2. Relaxation in Silicate Melts: Some Applications by Donald B. Dingwell, p. 21 - 66 Chapter 3. Rheology and Configurational Entropy of Silicate Melts by P. Richet & Y. Bottinga, p. 67 - 94 Chapter 4. Viscoelasticity by Sharon L. Webb and Donald B. Dingwell, p. 95 - 120 Chapter 5. Energetics of Silicate Melts by Alexandra Navrotsky, p. 121 - 144 Chapter 6. Thermodynamic Mixing Properties and the Structure of Silicate Melts by Paul C. Hess, p. 145 - 190 Chapter 7. Dynamics and Structure of Silicate and Oxide Melts: Nuclear Magnetic Resonance Studies by Jonathan F. Stebbins, p. 191 - 246 Chapter 8. Vibrational Spectroscopy of Silicate Liquids by Paul F. McMillan and George H. Wolf, p. 247 - 316 Chapter 9. X-ray Scattering and X-ray Spectroscopy Studies of Silicate Melts by Gordon E. Brown, Jr., François Farges, and G. Calas, p. 317 - 410 Chapter 10. Diffusion in Silicate Melts by Sumit Chakraborty, p. 411 - 504 Chapter 11. Pressure Effects on Silicate Melt Structure and Properties by G. H. Wolf and Paul F. McMillan, p. 505 - 562 Chapter 12. Computer Simulations of Silicate Melts by Peter H. Poole, Paul F. McMillan, and George H. Wolf, p. 563 - 616
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Baltimore [u.a.] : Johns Hopkins Univ. Press
    Call number: 19/M 97.0071
    Type of Medium: Monograph available for loan
    Pages: xxvii, 694 S.
    Edition: 3rd ed.
    ISBN: 0801854148
    Series Statement: John Hopkins studies in the mathematical sciences
    Classification:
    C.1.8.
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    München : Oldenbourg
    Call number: PIK M 311-95-0324
    Type of Medium: Monograph available for loan
    Pages: 390 S.
    ISBN: 3486233491
    Series Statement: Lehr- und Handbücher der Statistik ;
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: PIK N 071-98-0090
    Type of Medium: Monograph available for loan
    Pages: 159 p.
    ISBN: 3931825078
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Dordrecht : Kluwer Academic Publishers
    Associated volumes
    Call number: PIK M 490-00-0255
    In: nonconvex optimization and its applications
    Type of Medium: Monograph available for loan
    Pages: 339 p.
    ISBN: 0792357752
    Series Statement: nonconvex optimization and its applications
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Oxford [u.a.] : Clarendon Press
    Call number: PIK B 160-01-0185
    Type of Medium: Monograph available for loan
    Pages: XLIX, 592 S. , graph. Darst.
    Edition: Re-issued
    ISBN: 0198287429
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 97.0491
    In: Reviews in mineralogy
    Description / Table of Contents: Microorganisms cause mineral precipitation and dissolution and control the distribution of elements in diverse environments at and below the surface of the Earth. Conversely, mineralogical and geochemical factors exert important controls on microbial evolution and the structure of microbial communities. This was the rationale for the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah. Minerals have been known and honored since humans realized their essential contributions to the "terra firma" and stone tools thrust our species on the path of cultural evolution. Microbes are the oldest living creatures, probably inhabiting at least a few salubrious environments on the earth as early as 3.8 billion years ago. At this moment in history we are only beginning to appreciate the intimate juxtaposition and interdependence of minerals and microbes. We have been nudged into this position by the realization that our earth is finite, and the recognition of many global environmental problems that minerals and microbes contribute to, both positively and negatively. In addition, our globe may not be the only site in the solar system where 'life' arose, or may persist. What all of these concerns enunciate is that we as scientists only dimly comprehend our own dynamic "terrestrial halls." This short course and volume have been generated with great enthusiasm for grasping as much as possible of the whole panorama of possibilities that involve both the inorganic and biologic realms . Over 3600 mineral species have been defined and their relationships to each other and the environments in which they form have been documented. This vast data base, collected over the past several hundred years and constantly added to and upgraded, is a monument to the research efforts of many geoscientists focused on the inorganic realm. Much of this data has come from investigators intrigued by the novelty, beauty, and versatility of minerals, direct expressions of the chemistry and physics of geologic processes. We are now adding a new dimension to questions of mineral formation, dissolution, and distribution: what were, are, and will be the contributions of microbes to these basic components of the environment. Microbes have also been known for hundreds of years. However, their small size (0.5 to 5 µm in diameter) and the difficulties associated with identifying a species unless it was grown in the laboratory (cultured), precluded thorough analysis. The advent of molecular biology has only recently made it possible to evaluate microbial evolutionary relatedness (phylogeny) and physiological diversity. These techniques are now being applied to study of microbial populations in natural environments. It is becoming very clear that the surface of Earth is populated by far more species of microbes than there are types of minerals. We are now exploring every portion of the globe and finding the relationships under the rubric "geomicrobiology." The ocean deeps are characterized by a diversity of microorganisms, including those associated with manganese nodules. The profusion and concentration of minerals created at ocean ridges and vents matches the variety of microorganisms, large animals, and plants there. The snowy tops of mountain ranges and glaciers of Antarctica harbor not just ice but whole bacterial communities whose cellular types and activities need elucidation. The equatorial jungles and the deserts, with their enormous diversity of ecological niches, further challenge us. The diversity of geographic, geologic, and biologic environments, including some contributed by humans (e.g. mines, air-conditioning equipment), can now also be explored in detail. Modern studies use protocols developed to preserve or measure in situ chemical and physical characteristics. Electron microscopes allow direct characterization of mineral and biological morphology and internal structures. Spectroscopic techniques permit complimentary chemical analysis, including determination of oxidation states, with very high spatial resolution. Other studies quantitatively measure isotopic abudances. These data serve to distinguish biologically mediated, or biologically controlled formation of the mineral from an abiotic process and mechanism. Each ecological niche requires accurate characterization of the mineralogic and biologic entities in order for us to begin to understand the range of dynamic relationships. We can pose many questions. Is the mineral only a substrate, or is its occurrence and stability impacted by microbiologic activity and metabolic requirements? Which minerals are of microbiological rather than inorganic origin and what are the mechanisms by which organisms dictate the morphology and structure of the solid phase formed? How do organic metabolic products bind metals and change their form and distribution, with implications for metal toxicity and geochemical cycles? How do inorganic reactions such as mineral dissolution and precipitation impact microbial populations through control of their physical and chemical environments? Clearly, new and excitingly research areas exist for all varieties of scientists. Although published by the Mineralogical Society of America, the authors of this volume include microbiologists, molecular biologists, biochemists, biophysicists, bioengineers as well as biomineralogists. Here, they bring together their respective expertise and perspectives to provide disciplinary and interdisciplinary background needed to define and further explore the topic of geomicrobiology. The volume is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. In detail: Nealson and Stahl acquaint us with the basic properties of prokaryotes, including their size and structure. They define the types and ranges of microorganisms and their metabolisms and describe their impacts on some important biogeochemical cycles. Barns and Nierzwicki-Bauer document the phylogenetic relationships and evolution of microorganisms, begging some fundamental questions that might be now just beyond our grasp: What was the 'last common ancestor'? The physiology, biochemistry and ecology of hyperthermophilic, and the many diverse geologically important microbial species from the lithosphere and hydrosphere, as well as some of the techniques employed, are presented. Banfield and Hamers describe and integrate the processes acting on minerals and at surfaces relevant to microorganisms, examining the factors that control mineralogy, mineral forms, and the stability of phases. Surface properties and reaction rates for dissolution, precipitation, and growth of important classes of minerals are discussed. The possible role of mineral surfaces in formation of prebiotic molecules needed to explain the origin of life is examined. Little, Wagner and Lewandowski describe biofilms, an essential interface between microbes and minerals. They demonstrate that these membranes, with their unique morphological and structural attributes, are sites where much activity related to dissolution and/or formation of minerals takes place. Biology makes it possible to move molecules and elements against a gradient. Many questions regarding the transfer of elements from minerals to microbes at this important heterogeneous interface remain. Fortin, Ferris and Beveridge review surface-mediated mineral development by bacteria. Fresh or oceanic waters, anaerobic or aerobic environments provide discretely different ecologies, bacterial entities, and resulting mineralogies. It is obvious from this presentation that investigators have just scratched the surface of microbial mineralization processes. Bazlinski and Moskowitz review the magnetic biominerals and provide insights into the environmental and biological significance of these few tens of nanometer-sized mineral products. The magnetosome chemistry and biochemistry is probably the best understood of any biologically precipitated mineral. Their formation and unique properties underscore the roles these biomaterials play in the rock magnetic record and in geochemical cycles. Tebo, Ghiorse, van Waasbergen, Siering and Caspi contribute data on the roles of Mnminerals and Mn(II) oxidation in geologic environments. Their chapter encompasses molecular genetic and biochemical investigations. Manganese oxides and oxyhydroxides are notoriously difficult to identify and the crystal chemistry of these phases is a research effort on its own. The prospect of learning how microbes utilize the multiple oxidation states of Mn (2+, 3+ and 4+) as a source of energy sharpens the motivation for interdisciplinary study. Manganese is also known as a cofactor in the production and activation of the enzymes that digest large biomolecules that must be the source of the smaller molecular species and ultimately the building blocks of C, N, 0, H required by all species. How have the mechanisms identified in the bacterial systems been transferred up the phylogenetic tree to plants and humans? This is an expanding and intriguing area for further investigation. DeVrind-de Jong and de Vrind address silicate and carbonate deposition by algae (eukaryotic photosynthetic microorganisms). This chapter documents the mechanisms of biomineralization of diatoms and coccoliths. These abundant aquatic organisms are responsible for huge volumes of siliceous sediments and calcium carbonate deposits world wide. The implications of algal biomineralization for climatic variation throughout much of the Earth's history may be quite significant. Stone leads us though a quantitative approach to evaluating reactions between organic molecules and cations. He considers available extracellular organic ligands and the roles these play in uptake of metals. He documents the basic chemical speciation and complexation for several elements, making metal to metal comparisons. Remaining challenges involve coordinating the organic and inorganic results of biologic activity. Following the discussion of biomineralization and interactions between organic compounds and cations, Silver discusses the strategies microorganisms have evolved to deal with toxic metal concentrations in solution. Beyond the fundamental biological significance, this has important implications for understanding microbial populations in contaminated environments. The impact on the geochemical form (speciation) and distribution of elements is also discussed. Nordstrom and Southam summarize sulfide mineral oxidation and dissolution kinetics and devote considerable effort to describing the specific contributions of microorganisms, mostly bacteria. Despite the vast amount of accumulated information, many unanswered questions remain. Barker, Welch and Banfield address weathering of silicate minerals. This topic encompasses not only mineralogy but geomorphology, microbiology, and geochemistry. The necessary interdisciplinary mode of these investigations is highlighted by discussion of the role(s) of bacterial nutrition, groundwater chemistry, and biochemistry. There are obvious implications for hazardous waste storage, a currently daunting and politicized topic that requires predictions over thousands to millions of years. Finally, Des Marais treats the long term evolution of the carbon cycle, adopting a biogeochemical view. He discusses the sources, sinks and the transfer of the element over geologic time. Consideration of such a basic series of questions relating to the partitioning of carbon necessitate interdisciplinary crossovers. It is a fitting conclusion to a dialogue in progress.
    Type of Medium: Monograph available for loan
    Pages: 448 S.
    ISBN: 0-939950-45-6 , 978-0-939950-45-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 35
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. Microorganisms and Biogeochemical Cycles: What Can We Learn from Layered Microbial Communities by Kenneth H. Nealson and David A. Stahl, p. 5 - 34 Chapter 2. Microbial Diversity in Modern Subsurface, Ocean, Surface Environments by Susan M. Barns and Sandra Nierzwicki-Bauer, p. 35 - 80 Chapter 3. Processes at Minerals and Surfaces with Relevance to Microorganisms and Prebiotic Synthesis by Jillian F. Banfield and Robert J. Hamers, p. 81 - 122 Chapter 4. Spatial Relationships between Bacteria and Mineral Surfaces by Brenda J. Little, Patrica A. Wagner, and Zbigniew Lewandowski, p. 123 - 160 Chapter 5. Surface-mediated Mineral Development by Bacteria by D. Fortin, F.G. Ferris, and T.J. Beveridge, p. 161 - 180 Chapter 6. Microbial Biomineralization of Magnetic Iron Minerals: Microbiology, Magnetism and Environmental Significance by Dennis A. Bazylinksi and Bruce M. Moskowitz, p. 181 - 224 Chapter 7. Bacterially-Mediated Mineral Formation: Insights into Manganese(II) Oxidation from Molecular Genetic and Biochemical Studies by Bradley M. Tebo, William C. Ghiorse, Lorraine G. van Waasbergen, Patricia L. Siering, and Ron Caspi, p. 225 - 266 Chapter 8. Algal Deposition of Carbonates and Silicates by Elisabeth W. de Vrind-de Jong and Johannes P. M. de Vrind, p. 267 - 308 Chapter 9. Reactions of Extracellular Organic Ligands with Dissolved Metal Ions and Mineral Surfaces by Alan T. Stone, p. 309 - 344 Chapter 10. The Bacterial View of the Periodic Table: Specific Functions for All Elements by Simon Silver, p. 345 - 360 Chapter 11. Geomicrobiology of Sulfide Mineral Oxidation by D. Kirk Nordstrom and Gordon Southam, p. 361 - 390 Chapter 12. Biogeochemical Weathering of Silicate Minerals by William W. Barker, Susan A. Welch, and Jillian F. Banfield, p. 391 - 428 Chapter 13. Long-term Evolution of the Biogeochemical Carbon Cycle by David J. Des Marais, p. 429 - 448
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: ZSP-119-9
    In: Altenburger naturwissenschaftliche Forschungen
    Type of Medium: Series available for loan
    Pages: 289, 46 Bl. : Ill., graph. Darst., Kt.
    Series Statement: Altenburger naturwissenschaftliche Forschungen 9
    Language: German
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: PIK Q 200-99-0119
    In: ZIB-Report SC
    Type of Medium: Monograph available for loan
    Pages: 17 p.
    Series Statement: ZIB-Report SC 99-04
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...