ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Risk analysis 17 (1997), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: MTBE is a volatile organic compound used as an oxygenating agent in gasoline. Inhalation from fumes while refueling automobiles is the principle route of exposure for humans, and toxicity by this route has been well studied. Oral exposures to MTBE exist as well, primarily due to ground-water contamination from leaking stationary sources, such as underground storage tanks. Assessing the potential public health impacts of oral exposures to MTBE is problematic because drinking water studies do not exist for MTBE, and the few oil-gavage studies from which a risk assessment could be derived are limited. This paper evaluates the suitability of the MTBE database for conducting an inhalation route-to-oral route extrapolation of toxicity. This includes evaluating the similarity of critical effect between these two routes, quantifiable differences in absorption, distribution, metabolism, and excretion, and sufficiency of toxicity data by the inhalation route. We conclude that such an extrapolation is appropriate and have validated the extrapolation by finding comparable toxicity between a subchronic gavage oral bioassay and oral doses we extrapolate from a subchronic inhalation bioassay. Our results are extended to the 2-year inhalation toxicity study by Chun et al. (1992) in which rats were exposed to 0, 400, 3000, or 8000 ppm MTBE for 6 hr/d, 5 d/wk. We have estimated the equivalent oral doses to be 0, 130, 940, or 2700 mg/kg/d. These equivalent doses may be useful in conducting noncancer and cancer risk assessments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: This paper presents an approach for characterizing the probability of adverse effects occurring in a population exposed to dose rates in excess of the Reference Dose (RfD). The approach uses a linear threshold (hockey stick) model of response and is based on the current system of uncertainty factors used in setting RfDs. The approach requires generally available toxicological estimates such as No-Observed-Adverse-Effect Levels (NOAELs) or Benchmark Doses and doses at which adverse effects are observed in 50% of the test animals (ED50s). In this approach, Monte Carlo analysis is used to characterize the uncertainty in the dose response slope based on the range and magnitude of the key sources of uncertainty in setting protective doses. The method does not require information on the shape of the dose response curve for specific chemicals, but is amenable to the inclusion of such data. The approach is applied to four compounds to produce estimates of response rates for dose rates greater than the RfD
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, we describe distributions of ETS chemical concentrations and the characteristicsof those distributions (e.g., whether the distribution was log normal for agiven constituent) for the workplace exposure. Next, we present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, we derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions providedinformation beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS (extrapolated from 1 day to 1 week) and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Determining the probabilistic limits for the uncertainty factors used in the derivation of the Reference Dose (RfD) is an important step toward the goal of characterizing the risk of noncarcinogenic effects from exposure to environmental pollutants. If uncertainty factors are seen, individually, as “upper bounds” on the dose-scaling factor for sources of uncertainty, then determining comparable upper bounds for combinations of uncertainty factors can be accomplished by treating uncertainty factors as distributions, which can be combined by probabilistic techniques. This paper presents a conceptual approach to probabilistic uncertainty factors based on the definition and use of RfDs by the US. EPA. The approach does not attempt to distinguish one uncertainty factor from another based on empirical data or biological mechanisms but rather uses a simple displaced lognormal distribution as a generic representation of all uncertainty factors. Monte Carlo analyses show that the upper bounds for combinations of this distribution can vary by factors of two to four when compared to the fixed-value uncertainty factor approach. The probabilistic approach is demonstrated in the comparison of Hazard Quotients based on RfDs with differing number of uncertainty factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1539-6924
    Keywords: 16-City Study ; distributional analysis ; dose distributions ; environmental tobacco smoke ; Monte Carlo ; nicotine ; solanesol ; ultraviolet-absorbing particulate matter ; workplace exposure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, we describe distributions of ETS chemical concentrations and the characteristics of those distributions (e.g., whether the distribution was log normal for a given constituent) for the workplace exposure. Next, we present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, we derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS (extrapolated from 1 day to 1 week) and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...