ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (122)
Collection
Language
Years
Year
  • 1
    Call number: M 99.0270
    Type of Medium: Monograph available for loan
    Pages: 484 S. + 1 Disk.
    Edition: 3rd ed.
    ISBN: 0471128392
    Classification:
    C.2.9.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 29 (1995), S. 1223-1231 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 67 (1995), S. 3990-3999 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 43 (1995), S. 275-276 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 388 (1997), S. 31-31 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Amyotrophic lateral sclerosis (ALS) is a progressive age-dependent disease involving degeneration of motor neurons in the brain, brainstem and spinal cord. ALS is universally fatal, with the median survival of patients being five years from diagnosis. In a transgenic mouse model of ALS, we now ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 2297-2308 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The thickness uniformity of a spin-cast film is governed by the air flow through the spin coater, particularly the boundary layer flow above the surface of the spinning wafer, which controls solvent evaporation from the dry film. Laser Doppler velocimetry (LDV) and hot wire anemometry (HWA) are used to map the flow field throughout an industrial spin coater and to study flow instabilities in the boundary layer for various combinations of wafer spin speed and exhaust flow rate. The flow field measured by LDV compares well with a numerical simulation of laminar, axisymmetric, and steady air flow throughout the coating bowl. However, Ekman spiral flow instabilities of both type I (positive spiral angle) and type II (negative spiral angle) were found by HWA in the boundary layer near the surface of the spinning wafer. The type-II spirals form at Reynolds number in the range 2000–2500 and the type-I spirals form at Reynolds number in the range 80 000–85 000. It is the type-II spirals that are responsible for disrupting the air flow in the boundary layer flow and that cause nonuniform drying of spin-cast films. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 2191-2209 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Local similarity solutions are presented for the stress field of a fluid described by the Oldroyd-B viscoelastic constitutive equation near the singularity caused by the intersection of a planar free surface and a solid surface along which Navier's slip law holds, the partial-slip/slip problem. For the case where the velocity field is given by Newtonian kinematics, the elastic stress field is predicted to have a logarithmic singularity as the point of attachment of the free surface is approached. Asymptotic analysis for the fully-coupled flow, where the stress and flow fields are determined simultaneously, results in a local form for the flow and elastic stress fields that is similar in form to that for the decoupled case. For both the coupled and decoupled flow problems, the strength of the singularity depends on the dimensionless solvent viscosity and the slip coefficient, but not upon the Deborah number. The asymptotic results for the coupled flow differ from the predictions with Newtonian kinematics in that the strength of the singularity in the rate-of-strain and elastic stress fields scales with the inverse of the dimensionless solvent viscosity, and suggest that calculations with decreasing solvent viscosity become increasingly difficult. The fully-coupled analysis also suggests that the asymptotic behavior in the limit of vanishing solvent viscosity, the UCM limit, is qualitatively different from that for finite values of the solvent viscosity. The structure of the flow and stress fields for both the coupled and decoupled flow problems is reproduced by finite element calculations. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 2328-2344 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The two-dimensional, free-surface flow of a Newtonian fluid exiting from a planar die is computed by finite element analysis using quasiorthogonal mesh generation and local mesh refinement with irregular, embedded elements to obtain extreme resolution of the velocity and pressure fields near the die edge, where the fluid sheet attaches to the solid boundary. Calculations for the limit of large surface tension, the stick-slip problem, reproduce the singular behavior near the die edge expected from asymptotic analysis using a self-similar form for the velocity field. Results for finite capillary number (Ca) predict that the meniscus separates from the die at a finite contact angle and suggest that the capillary force enters the dominant normal stress balance at the die edge through an infinite curvature, as previously suggested by Schultz and Gervasio. The size of this region with large positive curvature increases with increasing Ca, and the strength of the singularity is in good agreement with theoretical predictions for a straight meniscus attached to the die at the appropriate contact angle predicted by the simulations. The contact angle appears to be determined from matching of the inner solution structure valid near the singularity with the bulk flow, in agreement with arguments made by Ramalingam; increasing the Reynolds number decreases the contact angle, corroborating this effect. Introducing fluid slip along the surface of the die changes the structure of the singularity in the pressure and stresses, but does not alleviate the singular behavior. In fact, the calculations with slip coefficients small enough not to change the bulk solution are more difficult than calculations with the no-slip boundary condition. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 1235-1247 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The local solution behavior near corners formed by the intersection of a slip surface with either a no-slip or a shear-free boundary is analyzed by finite element calculations of the two-dimensional flow of an inertialess Newtonian fluid in several model flow geometries; these flows are the flow in a tapered contraction, a sudden expansion and the extrudate swell from a planar die. Local finite element mesh refinement based on irregular, embedded elements is used to obtain extremely fine resolution of the velocity and pressure fields near the region where there is a sudden change in boundary condition. The calculations accurately reproduce the expected asymptotic behavior for a shear-free surface intersecting a no-slip boundary, where the solution is given by a self-similar form for the velocity and pressure fields. Replacing the shear-free condition with a slip condition yields a similar form for the local velocity and pressure fields and indicates that the slip boundary behaves, to leading order, as a shear-free surface. Calculations for a slip boundary intersecting a shear-free surface yield similar results, with the local behavior being given by asymptotic analysis for two shear-free surfaces intersecting to form a wedge. These results suggest that replacing the no-slip boundary condition in planar Newtonian die swell with a slip boundary condition can give rise to local behavior of velocity gradients and pressure which is more singular than the flow created with no-slip boundary conditions. This prediction is confirmed by calculations of Newtonian die swell with slip. These calculations also demonstrate that the local solution in Newtonian die swell is sensitive to the details of the numerical method. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...