ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 125 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Associated with non-steady magnetohydrodynamic (MHD) flow in the liquid metallic core of the Earth, with typical relative speeds of a fraction of a millimetre per second, are fluctuations in dynamic pressure of about 103 N m−2. Acting on the non-spherical core-mantle boundary (CMB), these pressure fluctuations give rise to a fluctuating net topographic torque Lt(t) (i=1, 2, 3)—where t denotes time—on the overlying solid mantle. Geophysicists now accept the proposal by one of us (RH) that Li-(t) makes a significant and possibly dominant contribution to the total torque Li*(t) on the mantle produced directly or indirectly by core motions. Other contributions are the ‘gravitational’ torque associated with fluctuating density gradients in the core, the ‘electromagnetic’ torque associated with Lorentz forces in the weakly electrically conducting lower mantle, and the ‘viscous’ torque associated with shearing motions in the boundary layer just below the CMB. the axial component L3*(t) of Li* (t) contributes to the observed fluctuations in the length of the day [LOD, an inverse measure of the angular speed of rotation of the solid Earth (mantle, crust and cryosphere)], and the equatorial components (Li* (t)) L* (t) contribute to the observed polar motion, as determined from measurements of changes in the Earth's rotation axis relative to its figure axis.In earlier phases of a continuing programme of research based on a method for determining Li(t) from geophysical data (proposed independently about ten years ago by Hide and Le Mouël), it was shown that longitude-dependent irregular CMB topography no higher than about 0.5 km could give rise to values of L3(t) sufficient to account for the observed magnitude of LOD fluctuations on decadal time-scales. Here, we report an investigation of the equatorial components (L1(t), L2(t)) = L(t) of Li(t) taking into account just one topographic feature of the CMB—albeit possibly the most pronounced—namely the axisymmetric equatorial bulge, with an equatorial radius exceeding the polar radius by 9.5 ± 0.1 km (the mean radius of the core being 3485 2 km, 0.547 times that of the whole Earth). A measure of the local horizontal gradient of the fluctuating pressure field near the CMB can be obtained from the local Eulerian flow velocity in the ‘free stream’ below the CMB by supposing that nearly everywhere in the outer reaches of the core—the ‘polosphere’ (Hide 1995)—geostrophic balance obtains between the pressure gradient and Coriolis forces. the polospheric velocity fields used were those determined by Jackson (1989) from geomagnetic secular variations (GSV) data on the basis of the geostrophic approximation combined with the assumption that, on the time-scales of the GSV, the core behaves like a perfect electrical conductor and the mantle as a perfect insulator.In general agreement with independent calculations by Hulot, Le Huy & Le Mouël (1996) and Greff-Lefftz & Legros (1995), we found that in magnitude L (t) for epochs from 1840 to 1990 typically exceeds L3(t) by a factor of about 10, roughly equal to the ratio of the height of the equatorial bulge to that strongly implied for irregular topography by determinations of L3(t) (see Hide et al. 1993). But L (t) still apparently falls short in magnitude by a factor of up to about 5 in its ability t o account for the amplitude of the observed time-series of polar motion on decadal time-scales (DPM), and it is poorly correlated with that time-series. So we conclude that unless uncertainties in the determination of the DPM time-series from observations-which we also discuss-have been seriously underestimated, the action of normal pressure forces associated with core motions on the equatorial bulge of the core-mantle boundary makes a significant but not dominant contribution to the excitation of decadal polar motion. Other geophysical processes such as the movement of groundwater and changes in sea-level must also be involved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-136X
    Keywords: Ventilation ; Metabolism ; Bats Hypoxia ; Hypercapnia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The ventilatory and metabolic responses of lesser spear-nosed bats to hypoxia and hypercapnia were measured to determine whether these corresponded to preliminary allometries and a positive relationship between hypoxic ventilatory threshold andP 50. Ventilatory responses of lesser spear-nosed bats to 3, 5 and 7% CO2 differed significantly from ventilation on air and each other. The magnitude of their ventilatory response to CO2 is consistent with the prediction of a smaller ventilatory response to hypercapnia in small compared to large mammals [ $$\% \Delta \dot V \propto M_B^{0.130}$$ ; Williams et al. (1994)]. Among 12, 10 and 8% O2 treatments only the ventilatory response to 8% O2 differed significantly from ventilation on air or the other treatments. Metabolic rate was significantly reduced at both 10 and 8% O2. The hypoxic ventilatory response of these bats does not support the prediction of a greater response in small compared to large mammals [ $$\% \Delta \dot V \propto M_B^{0.273}$$ ; Boggs and Tenney (1984)]. Their metabolic response is consistent with the hypoxic hypometabolism typical of small mammals, though not of comparable magnitude. The response, expressed as percent change in convection requirement ( $$({{\dot V} \mathord{\left/ {\vphantom {{\dot V} {\dot VO_2 )}}} \right. \kern-\nulldelimiterspace} {\dot VO_2 )}}$$ ), is also less than that observed in other small mammals. This relative insensitivity to hypoxia may be associated with this bat's unusually high affinity hemoglobin (P50=27.5 torr).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-136X
    Keywords: Key words Ventilation ; Metabolism ; BatsHypoxia ; Hypercapnia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The ventilatory and metabolic responses of lesser spear-nosed bats to hypoxia and hypercapnia were measured to determine whether these corresponded to preliminary allometries and a positive relationship between hypoxic ventilatory threshold and P 50. Ventilatory responses of lesser spear-nosed bats to 3, 5 and 7% CO2 differed significantly from ventilation on air and each other. The magnitude of their ventilatory response to CO2 is consistent with the prediction of a smaller ventilatory response to hypercapnia in small compared to large mammals [%ΔV˙∝M 0.130 B; Williams et al. (1994)]. Among 12, 10 and 8% O2 treatments only the ventilatory response to 8% O2 differed significantly from ventilation on air or the other treatments. Metabolic rate was significantly reduced at both 10 and 8% O2. The hypoxic ventilatory response of these bats does not support the prediction of a greater response in small compared to large mammals [%ΔV˙∝M 0.273 B; Boggs and Tenney (1984)]. Their metabolic response is consistent with the hypoxic hypometabolism typical of small mammals, though not of comparable magnitude. The response, expressed as percent change in convection requirement (V˙/V˙O2), is also less than that observed in other small mammals. This relative insensitivity to hypoxia may be associated with this bat’s unusually high affinity hemoglobin (P50=27.5 torr).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-05-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: The rotation of the Moon is influenced by solid-body tides and interaction at a liquid-core/solid-mantle boundary. The Lunar Laser Ranging (LLR) data are sensitive to variations in lunar rotation. Analysis of those ranges reveals four dissipation periodicities in the rotation. These signatures can be explained with the combined effects of tide plus core, but not with either alone. The fluid core detection exceeds three times its uncertainty. The inferred core radius has a 1 -sigma upper limit of 352 km for iron and up to 374 km if sulfur is present. The tidal dissipation is strong, Q at one month is 37 +/- 5 .Q increases for longer periods and is 60 (-15, +40) at one year.Dynamical evidence for a fluid lunar core has previously been presented. These-earlier solutions included three dissipation parameters. New solutions benefit from additional LLR data and an improved gravity field from Doppler tracking of Lunar Prospector. Five dissipation parameters are now solved for. There are several options for dissipation parameters: a core coupling parameter, a time delay for tidal distortion of the moments of inertia, and five periodic terms in the rotation angles. Solutions with different combinations of these are compatible (a theory relates K/C and time delay to a series of periodic terms). The solutions used K/C, time delay, and one periodic term. When dissipation signatures at five rotation frequencies are solved for, four amplitudes (4 to 263 milliarcseconds) are detected above the noise. Attempts to explain these results using either tides alone or core alone fail (less than 3(sigma) discrepancy for the former and 9(sigma), for the latter). A combination of tides and liquid core matches the results well.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysics; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Description: Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).
    Type: Nature
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-08
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Type: Fall AGU Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...