ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 3 (1997), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: This study investigated simultaneous plant and soil feedbacks on growth enhancement with elevated [CO2] within microcosms of yellow birch (Betula alleghaniensis Britt.) in the second year of growth. Understanding the integrated responses of model ecosystems may provide key insight into the potential net nutrient feedbacks on [CO2] growth enhancements in temperate forests. We measured the net biomass production, C:N ratios, root architecture, and mycorrhizal responses of yellow birch, in situ rates gross nitrogen mineralization and the partitioning of available NH4+ between yellow birch and soil microbes. Elevated atmospheric [CO2] resulted in significant alterations in the cycling of N within the microcosms. Plant C/N ratios were significantly increased, gross mineralization and NH4+ consumption rates were decreased, and relative microbial uptake of NH4+ was increased, representing a suite of N cycling negative feedbacks on N availability. However, increased C/N ratios may also be a mechanism which allows plants to maintain higher growth with a constant or reduced N supply. Total plant N content was increased with elevated [CO2], suggesting that yellow birch had successfully increased their ability to acquire nutrients during the first year of growth. However, plant uptake rates of NH4+ had decreased in the second year. This discrepancy implies that, in this study, nitrogen uptake showed a trend through ontogeny of decreasing enhancement under elevated [CO2]. The reduced N mineralization and relatively increased N immobilization are a potential feedback which may drive this ontogenetic trend. This study has demonstrated the importance of using an integrated approach to exploring potential nutrient-cycling feedbacks in elevated [CO2].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 4 (1998), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Rising levels of atmospheric CO2 may alter patterns of plant biomass production. These changes will be dependent on the ability of plants to acquire sufficient nutrients to maintain enhanced growth. Species-specific differences in responsiveness to CO2 may lead to changes in plant community composition and biodiversity. Differences in species-level growth responses to CO2 may be, in a large part, driven by differences in the ability to acquire nutrients. To understand the mechanisms of how elevated CO2 leads to changes in community-level productivity, we need to study the growth responses and patterns of nutrient acquisition for each of the species that comprise the community.In this paper, we present a study of how elevated CO2 affects community-level and species-level patterns of nitrogen uptake and biomass production. As an experimental system we use experimental communities of 11 co-occurring annuals common to disturbed seasonal grasslands in south-western U.S.A. We established experimental communities with approximately even numbers of each species in three different atmospheric CO2 concentrations (375, 550, and 700 ppm). We maintained these communities for 1, 1.5, and 2 months at which times we applied a 15N tracer (15NH415NO3) to quantify the nitrogen uptake and then measured plant biomass, nitrogen content, and nitrogen uptake rates for the entire communities as well as for each species.Overall, community-level responses to elevated CO2 were consistent with the majority of other studies of individual- and multispecies assemblages, where elevated CO2 leads to enhanced biomass production early on, but this enhancement declines through time. In contrast, the responses of the individual species within the communities was highly variable, showing the full range of responses from positive to negative. Due to the large variation in size between the different species, community-level responses were generally determined by the responses of only one or a few species. Thus, while several of the smaller species showed trends of increased biomass and nitrogen uptake in elevated CO2 at the end of the experiment, community-level patterns showed a decrease in these parameters due to the significant reduction in biomass and nitrogen content in the single largest species.The relationship between enhancement of nitrogen uptake and biomass production in elevated CO2 was highly significant for both 550 ppm and 700 ppm CO2. This relationship strongly suggests that the ability of plants to increase nitrogen uptake (through changes in physiology, morphology, architecture, or mycorrhizal symbionts) may be an important determinant of which species in a community will be able to respond to increased CO2 levels with increased biomass production. The fact that the most dominant species within the community showed reduced enhancement and the smaller species showed increased enhancement suggest that through time, elevated CO2 may lead to significant changes in community composition.At the community level, nitrogen uptake rates relative to plant nitrogen content were invariable between the three different CO2 levels at each harvest. This was in contrast to significant reductions in total plant nitrogen uptake and nitrogen uptake relative to total plant biomass. These patterns support the hypothesis that plant nitrogen uptake is largely regulated by physiological activity, assuming that physiological activity is controlled by nitrogen content and thus protein and enzyme content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 5 (1999), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Increased levels of atmospheric CO2 may alter the structure and composition of plant communities by affecting how species respond to their physical and biological environment. We investigated how elevated CO2 influenced the response of paper birch ( Betula papyrifera Marsh.) and yellow birch (Betula alleghaniensis Britt.) seedlings to variation in soil moisture. Seedlings were grown for four months on a soil moisture gradient, individually and in mixed species stands, in controlled environment facilities at ambient (375 μL L–1) and elevated (700 μL L–1) atmospheric CO2. For both individually and competitively grown paper birch seedlings, there was a greater CO2 growth enhancement for seedlings watered less frequently than for well-watered seedlings. This differential change in CO2 responsiveness across the moisture gradient reduced the difference in seedling growth between high and low water levels and effectively broadened the regeneration niche of paper birch. In contrast, for yellow birch seedlings, elevated CO2 only produced a significant growth enhancement at the wet end of the soil moisture gradient, and increased the size difference between seedlings at the two ends of the gradient. Gas exchange measurements showed that paper birch seedlings were more sensitive than yellow birch seedlings to declines in soil moisture, and that elevated CO2 reduced this sensitivity. Additionally, elevated CO2 improved survival of yellow birch seedlings growing in competition with paper birch in dry stands. Thus, elevated CO2 may influence regeneration patterns of paper birch and yellow birch on sites of differing soil moisture. In the future, as atmospheric CO2 levels rise, growth of paper birch seedlings and survival of yellow birch seedlings may be enhanced on xeric sites, while yellow birch may show improved growth on mesic sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 376 (1995), S. 559-560 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - Genome size, as measured by the content of nuclear DNA per cell, varies over 2,500-fold among species of angiosperm plants1. As genome size is positively correlated with cell size and with the duration of cell cycle2, it may have direct effects on the evolutionary strategy3, life history, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 113 (1997), S. 115-125 
    ISSN: 1432-1939
    Keywords: Key wordsBetula ; CO2 ; Mycorrhizal fungi ; Nitrogen ; Pool dilution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The response of temperate forest ecosystems to elevated atmospheric CO2 concentrations is important because these ecosystems represent a significant component of the global carbon cycle. Two important but not well understood processes which elevated CO2 may substantially alter in these systems are regeneration and nitrogen cycling. If elevated CO2 leads to changes in species composition in regenerating forest communities then the structure and function of these ecosystems may be affected. In most temperate forests, nitrogen appears to be a limiting nutrient. If elevated CO2 leads to reductions in nitrogen cycling through increased sequestration of nitrogen in plant biomass or reductions in mineralization rates, long-term forest productivity may be constrained. To study these processes, we established mesocosms of regenerating forest communities in controlled environments maintained at either ambient (375 ppm) or elevated (700 ppm) CO2 concentrations. Mesocosms were constructed from intact monoliths of organic forest soil. We maintained these mesocosms for 2 years without any external inputs of nitrogen and allowed the plants naturally present as seeds and rhizomes to regenerate. We used 15N pool dilution techniques to quantify nitrogen fluxes within the mesocosms at the end of the 2 years. Elevated atmospheric CO2 concentration significantly affected a number of plant and soil processes in the experimental regenerating forest mesocosms. These changes included increases in total plant biomass production, plant C/N ratios, ectomycorrhizal colonization of tree fine roots, changes in tree fine root architecture, and decreases in plant NH4 + uptake rates, gross NH4 + mineralization rates, and gross NH4 + consumption rates. In addition, there was a shift in the relative biomass contribution of the two dominant regenerating tree species; the proportion of total biomass contributed by white birch (Betula papyrifera) decreased and the proportion of total biomass contributed by yellow birch (B. alleghaniensis) increased. However, elevated CO2 had no significant effect on the total amount of nitrogen in plant and soil microbial biomass. In this study we observed a suite of effects due to elevated CO2, some of which could lead to increases in potential long term growth responses to elevated CO2, other to decreases. The reduced plant NH4 + uptake rates we observed are consistent with reduced NH4 + availability due to reduced gross mineralization rates. Reduced NH4 + mineralization rates are consistent with the increases in C/N ratios we observed for leaf and fine root material. Together, these data suggest the positive increases in plant root architectural parameters and mycorrhizal colonization may not be as important as the potential negative effects of reduced nitrogen availability through decreased decomposition rates in a future atmosphere with elevated CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 109 (1997), S. 507-515 
    ISSN: 1432-1939
    Keywords: Key words Canopy access ; Light-saturated canopy photosynthesis ; Pmax ; Photosynthesis-nitrogen relationship ; Variance partitioning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Within the same forest, photosynthesis can vary greatly among species and within an individual tree. Quantifying the magnitude of variation in leaf-level photosynthesis in a forest canopy will improve our understanding of and ability to model forest carbon cycling. This information requires extensive sampling of photosynthesis in the canopy. We used a 22-m-tall, four-wheel-drive aerial lift to reach five to ten leaves from the tops of numerous individuals of several species of temperate deciduous trees in central Massachusetts. The goals of this study were to measure light-saturated photosynthesis in co-occurring canopy tree species under field conditions, and to identify sampling schemes appropriate for canopy tree studies with challenging logistics. Photosynthesis differed significantly among species. Even though all leaves measured were canopy-top, sun-acclimated foliage, the more shade-tolerant species tended to have lower light-saturated photosynthetic rates (P max) than the shade-intolerant species. Likewise, leaf mass per area (LMA) and nitrogen content (N) varied significantly between species. With only one exception, the shade-tolerant species tended to have lower nitrogen content on an area basis than the intolerant species, although the LMA did not differ systematically between these ecological types. Light-saturated P max rates and nitrogen content, both calculated on either an area or a mass basis, and the leaf mass to area ratio, significantly differed not only among species, but also among individuals within species (P〈0.0001 for both). Differences among species accounted for a greater proportion of variance in the P max rates and the nitrogen content than the differences among individuals within a species (58.5–78.8% of the total variance for the measured parameters was attributed to species-level differences versus 5.5–17.4% of the variance was attributed to differences between individual trees of a given species). Furthermore, more variation is accounted for by differences among leaves in a single individual tree, than by differences among individual trees of a given species (10.7–30.4% versus 5.5–17.4%). This result allows us to compare species-level photosynthesis, even if the sample size of the number of trees is low. This is important because studies of canopy-level photosynthesis are often limited by the difficulty of canopy access. As an alternative to direct canopy access measurements of photosynthesis, it would be useful to find an ”easy-to-measure” proxy for light-saturated photosynthetic rates to facilitate modeling forest carbon cycling. Across all species in this study, the strongest correlation was between nitrogen content expressed on an area basis (mmol m–2, N area) and light-saturated P max rate (μmol m–2 s–1, P maxarea) (r 2=0.511). However, within a given species, leaf nitrogen was not tightly correlated with photosynthesis. Our sampling design minimized intra-specific leaf-level variation (i.e., leaves were taken only from the top of the canopy and at only one point in the season). This implies that easy-to-measure trends in nitrogen content of leaves may be used to predict the species-specific light-saturated P max rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Allocation ; Betula ; Biomass ; Nutrients ; Root length dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spatial and temporal dynamics of biomass allocation within and between organs were investigated in seedlings of two birch species of contrasting successional status. Seedlings of Betula alleghaniensis Britt (yellow birch) and B. populifolia Marsh (gray birch) were grown for 6 weeks at two nutrient levels in rectangular plexiglass containers to allow non-destructive estimates of root growth, production and loss. Leaf area and production were simultaneously monitored. Yellow birch responded more to nutrient level than gray birch in terms of total biomass, shoot biomass, leaf area and root length. Yellow birch also flexibly altered within-organ allocation (specific leaf area, specific root length and specific soil amount). In contrast, gray birch altered between-organ allocation patterns (root length:leaf area and soil amount:leaf area ratios) more than yellow birch in response to nutrient level. Yellow birch showed greater overall root density changes within a very compact root system, while gray birch showed localized root density changes as concentric bands of new root production spread through the soil. Species differ critically in their responses of standing root length and root production and loss rates to nutrient supply. Early successional species such as gray birch are hypothesized to exhibit higher plasticity in varied environments than later successional species such as yellow birch. Our results suggest that different patterns of allocation, within and between plant organs, do not necessarily follow the same trajectories. To characterize thoroughly the nature of functional flexibility through ontogeny, within- and between-organ patterns of allocation must be accounted for.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Key wordsAsclepias syriaca ; Elevated CO2 ; Frankliniella occidentalis ; Thrips ; Herbivory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We measured the effect of elevated CO2 on populations of the western flower thrips, Frankliniella occidentalis and on the amount of leaf damage inflicted by the thrips to one of its host plants, the common milkweed, Asclepias syriaca. Plants grown at elevated CO2 had significantly greater aboveground biomass and C:N ratios, and significantly reduced percentage nitrogen. The number of thrips per plant was not affected by CO2 treatment, but the density of thrips (numbers per gram aboveground biomass), was significantly reduced at high CO2. Consumption by thrips, expressed as the amount of damaged leaf area per capita, was significantly greater at high CO2, and the amount of leaf area damaged by thrips was increased by 33%. However overall leaf area at elevated CO2 increased by 62%, more than compensating for the increase in thrips consumption. The net outcome was that plants at elevated CO2 had 3.6 times more undamaged leaf area available for photosynthesis than plants at ambient CO2, even though they had only 1.6 times the overall amount of leaf area. This study highlights the need for measuring the effects of herbivory at the whole-plant level and also the importance of taking herbivory into account when predicting plant responses to elevated CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Key words Abutilon theophrasti ; Genetic variation ; Plant size ; Phenotypic plasticity ; Reproductive allocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Seed output is determined by two processes: resource acquisition and the allocation of resources to seeds. In order to clarify how the reaction norm of seed output is controlled by the phenotypic expression of its two components, we examined the genetic components of plasticity of seed dry mass, plant size, and reproductive allocation under different conditions of soil nutrient availability and conspecific competition among eight families of Abutilon theophrasti. Without competition, the reaction norm of seed mass of the families crossed between the lowest and other nutrient levels, although neither of its components, plant size and reproductive allocation, showed such a response. The crossing reaction norm (i.e., reversal of relative fitnesses of different genotypes along the environmental gradient) of seed mass resulted from (1) a trade-off between plant size and reproductive allocation, and (2) changes in the relative magnitude of genetic variances in plant size and reproductive allocation with soil nutrient availability. While allocation was more important in determining seed mass under limiting nutrient conditions, plant size became more important under high-nutrient conditions. There were no significant genetic variances in seed mass, plant size, and reproductive allocation in the competition treatment, except at the highest nutrient level. The results show that plant competition mitigated the effects of genetic differences in plant performance among the families. We discuss the results in relation to maintenance of genetic variation within a population.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Lymantria dispar ; Betulaceae ; Elevation CO2 ; Tannin ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plant species differ broadly in their responses to an elevated CO2 atmosphere, particularly in the extent of nitrogen dilution of leaf tissue. Insect herbivores are often limited by the availability of nutrients, such as nitrogen, in their host plant tissue and may therefore respond differentially on different plant species grown in CO2-enriched environments. We reared gyspy moth larvae (Lymantria dispar) in situ on seedlings of yellow birch (Betula allegheniensis) and gray birch (B. populifolia) grown in an ambient (350 ppm) or elevated (700 ppm) CO2 atmosphere to test whether larval responses in the elevated CO2 atmosphere were species-dependent. We report that female gypsy moths (Lymantria dispar) reared on gray birch (Betula populifolia) achieved similar pupal masses on plants grown at an ambient or an elevated CO2 concentration. However, on yellow birch (B. allegheniensis), female pupal mass was 38% smaller on plants in the elevated-CO2 atmosphere. Larval mortality was significantly higher on yellow birch than gray birch, but did not differ between the CO2 treatments. Relative growth rate declined more in the elevated CO2 atmosphere for larvae on yellow birch than for those on gray birch. In preference tests, larvae preferred ambient over elevated CO2-grown leaves of yellow birch, but showed no preference between gray birch leaves from the two CO2 atmospheres. This differential response of gypsy moths to their host species corresponded to a greater decline in leaf nutritional quality in the elevated CO2 atmosphere in yellow birch than in gray birch. Leaf nitrogen content of yellow birch dropped from 2.68% to 1.99% while that of gray birch leaves only declined from 3.23% to 2.63%. Meanwhile, leaf condensed tannin concentration increased from 8.92% to 11.45% in yellow birch leaves while gray birch leaves only increased from 10.72% to 12.34%. Thus the declines in larval performance in a future atmosphere may be substantial and host-species-specific.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...