ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • 1995-1999  (7)
Collection
Year
  • 1
    Publication Date: 2004-12-03
    Description: The Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of 3C 279, Mkn 421, PKS 2155-304, BL Lac 0716+714 and OJ 287 blazars are presented. Blazars are a class of active galactic nuclei characterized by high variability, high polarization, flat radio spectrum and featureless spectrum. The X-ray spectra and flux variations of blazars are discussed. The inverse correlation between X-ray flux and index, soft lag, the convex curvature of the spectrum, flat gamma-ray and/or X-ray spectra, fast variability and featureless spectrum are common characteristics of blazars.
    Keywords: Astronomy
    Type: ; 413-416
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.
    Keywords: Life Sciences (General)
    Type: Neurochemical research (ISSN 0364-3190); 24; 4; 497-506
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Neurons destined for each region of the neocortex are known to arise approximately in an "inside-to-outside" sequence from a pseudostratified ventricular epithelium (PVE). This sequence is initiated rostrolaterally and propagates caudomedially. Moreover, independently of location in the PVE, the neuronogenetic sequence in mouse is divisible into 11 cell cycles that occur over a 6 d period. Here we use a novel "birth hour" method that identifies small cohorts of neurons born during a single 2 hr period, i.e., 10-20% of a single cell cycle, which corresponds to approximately 1.5% of the 6 d neuronogenetic period. This method shows that neurons arising with the same cycle of the 11 cycle sequence in mouse have common laminar fates even if they arise from widely separated positions on the PVE (neurons of fields 1 and 40) and therefore arise at different embryonic times. Even at this high level of temporal resolution, simultaneously arising cells occupy more than one cortical layer, and there is substantial overlap in the distributions of cells arising with successive cycles. We demonstrate additionally that the laminar representation of cells arising with a given cycle is little if at all modified over the early postnatal interval of histogenetic cell death. We infer from these findings that cell cycle is a neuronogenetic counting mechanism and that this counting mechanism is integral to subsequent processes that determine cortical laminar fate.
    Keywords: Life Sciences (General)
    Type: The Journal of neuroscience : the official journal of the Society for Neuroscience (ISSN 0270-6474); 19; 23; 10357-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Neuronogenesis in the neocortical pseudostratified ventricular epithelium (PVE) is initiated rostrolaterally and progresses caudo-medially as development progresses. Here we have measured the cytokinetic parameters and the fractional neuronal output parameter, Q, of laterally located early-maturing regions over the principal embryonic days (E12-E15) of neocortical neuronogenesis in the mouse. These measures are compared with ones previously made of a medial, late-maturing portion of the PVE. Laterally, as medially, the duration of the neuronogenetic interval is 6 days and comprises 11 integer cell cycles. Also, in both lateral and medial areas the length of G1 phase (TG1) increases nearly 4-fold and is the only cell cycle parameter to change. Q progresses essentially identically laterally and medially with respect to the succession of integer cell cycles. Most importantly, from E12 to E13 there is a steeply declining lateral to medial gradient in TG1. The gradient is due both to the lateral to medial graded stage of neuronogenesis and to the stepwise increase in TG1 with each integer cycle during the neuronogenetic interval. To our knowledge this gradient in TG1 of the cerebral PVE is the first cell biological gradient to be demonstrated experimentally in such an extensive proliferative epithelial sheet. We suggest that this gradient in TG1 is the cellular mechanism for positionally encoding a protomap of the neocortex within the PVE.
    Keywords: Life Sciences (General)
    Type: Cerebral cortex (New York, N.Y. : 1991) (ISSN 1047-3211); 7; 7; 678-89
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We have analyzed the expression patterns of mRNAs of five cell cycle related proteins in the ventricular zone of the neocortical cerebral wall over the course of the neuronogenetic interval in the mouse. One set of mRNAs (cyclin E and p21) are initially expressed at high levels but expression then falls to a low asymptote. A second set (p27, cyclin B and cdk2) are initially expressed at low levels but ascend to peak levels only to decline again. These patterns divide the overall neuronogenetic interval into three phases. In phase 1 cyclin E and p21 levels of mRNA expression are high, while those of mRNAs of p27, cdk2 and cyclin B are low. In this phase the fraction of cells leaving the cycle after each mitosis, Q, is low and the duration of the G1 phase, TG1, is short. In phase 2 levels of expression of cyclin E and p21 fall to asymptote while levels of expression of mRNA of the other three proteins reach their peaks. Q increases to approach 0.5 and TG1 increases even more rapidly to approach its maximum length. In phase 3 levels of expression of cyclin E and p21 mRNAs remain low and those of the mRNAs of the other three proteins fall. TG1 becomes maximum and Q rapidly increases to 1.0. The character of these phases can be understood in part as consequences of the reciprocal regulatory influence of p27 and cyclin E and of the rate limiting functions of p27 at the restriction point and of cyclin E at the G1 to S transition.
    Keywords: Life Sciences (General)
    Type: Cerebral cortex (New York, N.Y. : 1991) (ISSN 1047-3211); 9; 8; 824-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Neocortical neuronogenesis occurs in the pseudostratified ventricular epithelium (PVE) where nuclei of proliferative cells undergo interkinetic nuclear movement. A fraction of daughter cells exits the cell cycle as neurons (the quiescent, or Q, fraction), whereas a complementary fraction remains in the cell cycle (the proliferative, or P, fraction). By means of sequential thymidine and bromodeoxyuridine injections in mouse on embryonic day 14, we have monitored the proliferative and post-mitotic migratory behaviors of 1 and 2 hr cohorts of PVE cells defined by the injection protocols. Soon after mitosis, the Q fraction partitions into a rapidly exiting (up to 50 microns/hr) subpopulation (Qr) and a more slowly exiting (6 microns/hr) subpopulation (Qs). Qr and Qs are separated as two distributions on exit from the ventricular zone with an interpeak distance of approximately 40 microns. Cells in Qr and Qs migrate through the intermediate zone with no significant change in the interpeak distance, suggesting that they migrate at approximately the same velocities. The rate of migration increases with ascent through the intermediate zone (average 2-6.4 microns/hr) slowing only transiently on entry into the developing cortex. Within the cortex, Qr and Qs merge to form a single distribution most concentrated over layer V.
    Keywords: Life Sciences (General)
    Type: The Journal of neuroscience : the official journal of the Society for Neuroscience (ISSN 0270-6474); 16; 18; 5762-76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Neurons of neocortical layers II-VI in the dorsomedial cortex of the mouse arise in the pseudostratified ventricular epithelium (PVE) through 11 cell cycles over the six embryonic days 11-17 (E11-E17). The present experiments measure the proportion of daughter cells that leave the cycle (quiescent or Q fraction or Q) during a single cell cycle and the complementary proportion that continues to proliferate (proliferative or P fraction or P; P = 1 - Q). Q and P for the PVE become 0.5 in the course of the eighth cycle, occurring on E14, and Q rises to approximately 0.8 (and P falls to approximately 0.2) in the course of the 10th cycle occurring on E16. This indicates that early in neuronogenesis, neurons are produced relatively slowly and the PVE expands rapidly but that the reverse happens in the final phase of neuronogenesis. The present analysis completes a cycle of analyses that have determined the four fundamental parameters of cell proliferation: growth fraction, lengths of cell cycle, and phases Q and P. These parameters are the basis of a coherent neuronogenetic model that characterizes patterns of growth of the PVE and mathematically relates the size of the initial proliferative population to the neuronal population of the adult neocortex.
    Keywords: Life Sciences (General)
    Type: The Journal of neuroscience : the official journal of the Society for Neuroscience (ISSN 0270-6474); 16; 19; 6183-96
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...