ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.
    Keywords: MATERIALS PROCESSING
    Type: NASA. Lewis Research Center, The 3rd International Microgravity Combustion Workshop; p 345-350
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-07
    Description: This is a new project which started in May 1996. The main objective of the experimental/numerical study is to improve the understanding of the physics of two-way coupling between the dispersed phase and turbulence in a prototypical turbulent shear flow - homogeneous shear, laden with small liquid droplets (in gas) or gaseous bubbles (in liquid). The method of direct numerical simulation (DNS) is used to solve the full three-dimensional, time-dependent Navier-Stokes equations including the terms describing the two-way coupling between the dispersed phase and the carrier flow. The results include the temporal evolution of the three-dimensional energy and dissipation spectra and the rate of energy transfer across the energy spectrum to understand the fundamental physics of turbulence modulation, especially the effects of varying the magnitude of gravitational acceleration. The mean-square displacement and diffusivity of the droplets (or bubbles) of a given size and the preferential accumulation of droplets in low vorticity regions and bubbles in high vorticity regions will be examined in detail for different magnitudes of gravitational acceleration. These numerical results which will be compared with their corresponding measured data will provide a data base from which a subgrid-scale (SGS) model can be developed and validated for use in large-eddy simulation (LES) of particle-laden shear flows. Two parallel sets of experiments will be conducted: bubbles in an immiscible liquid and droplets in air. In both experiments homogeneous shear will be imposed on the turbulent carrier flow. The instantaneous velocities of the fluid and polydispersed-size particles (droplets or bubbles) will be measured simultaneously using a two-component Phase-Doppler Particle Analyzer (PDPA). Also, the velocity statistics and energy spectra for the carrier flow will be measured.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Third Microgravity Fluid Physics Conference; 443-448; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Description: This paper describes a technique for measuring trace quantities of oxygen and moisture contaminants present in a somi-conductor and/or containerless processing environment.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The present numerical study is concerned with the fundamental physics of the multi-way interaction between turbulence, chemical reaction and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous three-dimensional governing equations (continuity, Navier-Stokes, species mass fractions and energy) under the zero-Mach number assumption. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 173-178; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Trace levels of molecular oxygen are measured by introducing a gas containing the molecular oxygen into a target zone, and impacting the molecular oxygen in the target zone with electrons at the O(-) resonant energy level for dissociative electron attachment to produce O(-) ions. Preferably, the electrons have an energy of about 4 to about 10 eV. The amount of O(-) ions produced is measured, and is correlated with the molecular oxygen content in the target zone. The technique is effective for measuring levels of oxygen below 50 ppb. and even less than 1 ppb. The amount of O(-) can be measured in a quadrupole mass analyzer. Best results are obtained when the electrons have an energy of about 6 to about 8 eV. and preferably about 6.8 eV. The method can be used for other species by selecting the appropriate electron energy level.
    Keywords: Inorganic and Physical Chemistry
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements for DAA surveillance system performance. A recent study conducted using NASA's ACES (Airspace Concept Evaluation System) simulation capability begins to address questions surrounding the development of draft MOPS for DAA surveillance systems. ACES simulations were conducted to study the performance of sensor systems proposed by the SC-228 DAA Surveillance sub-group. Analysis included but was not limited to: 1) number of intruders (both IFR and VFR) detected by all sensors as a function of UAS flight time, 2) number of intruders (both IFR and VFR) detected by radar alone as a function of UAS flight time, and 3) number of VFR intruders detected by all sensors as a function of UAS flight time. The results will be used by SC-228 to inform decisions about the surveillance standards of UAS DAA systems and future requirements development and validation efforts.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN27427 , RTCA SC-228 DAA Surveillance Subgroup Meeting; Oct 22, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Electron source and electron optics of reversal electron-attachment detector modified to increase sensitivity. Original version described in "High-Sensitivity Ionization Trace-Species Detector" (NPO-17596). Used to detect molecules of particular chemical species of interest (e.g., narcotics, explosives, or organic wastes) present in air at low concentrations, and known to attach extremely low-energy electrons. Apparatus does this by ionizing molecules from sampled atmosphere, then detecting ions of species of interest. Detector features indirectly heated spherical cathode and redesigned electron optics, together, deliver more electrons at low kinetic energy to reversal plane, R. Greater electron current generates more ions for detection.
    Keywords: PHYSICAL SCIENCES
    Type: NPO-18870 , NASA Tech Briefs (ISSN 0145-319X); 19; 3; P. 59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements for DAA alerting system performance. A recent study conducted using NASA's ACES (Airspace Concept Evaluation System) simulation capability begins to address questions surrounding the development of draft MOPS for DAA alerting systems. ACES simulations were conducted to study the performance of alerting systems proposed by the SC-228 DAA Alerting sub-group. Analysis included but was not limited to: 1) correct alert (and timeliness), 2) false alert (and severity and duration), 3) missed alert, and 4) probability of an alert type at the time of loss of well clear. The performance of DAA alerting systems when using intent vs. dead-reckoning for UAS ownship trajectories was also compared. The results will be used by SC-228 to inform decisions about the surveillance standards of UAS DAA systems and future requirements development and validation efforts.
    Keywords: Behavioral Sciences; Research and Support Facilities (Air); Air Transportation and Safety; Avionics and Aircraft Instrumentation
    Type: ARC-E-DAA-TN27428 , RTCA SC-228 DAA Surveillance Subgroup; Oct 22, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A new approach has been proposed to determine ocean subsurface particulate backscattering coefficient bbp from CALIOP 30deg off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180deg scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: NF1676L-25398 , Journal of Optics Express (e-ISSN 1094-4087); 24; 25; 29001-29008
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...