ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: PIK M 390-97-0119
    In: Springer-Lehrbuch
    Type of Medium: Monograph available for loan
    Pages: 320 S.
    Edition: 2. überarb. Aufl.
    ISBN: 3540619054
    Series Statement: Springer-Lehrbuch
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: PIK M 311-03-0111
    In: Die Grundlehren der mathematischen Wissenschaften
    Type of Medium: Monograph available for loan
    Pages: XI, 430 S.
    Edition: 2. ed
    ISBN: 0387983627
    Series Statement: Die Grundlehren der mathematischen Wissenschaften
    Uniform Title: Fluktuacii v dinamičeskich sistemach pod dejstviem malych slučajnych vozmuščenij
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI G5-96-0167
    In: NATO ASI Series
    Type of Medium: Monograph available for loan
    Pages: X, 649 S.
    ISBN: 3540606955
    Series Statement: NATO ASI series : Global Environmental Change 41
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI G3-96-0166
    In: Ecological studies, 120
    Description / Table of Contents: The discovery of large petroleum reserves in northern Alaska prompted the US National Research Council to recommend priorities for ecological research on disturbance effects in the Arctic. Subsequently, this led to the implementation of a field study by the Department of Energy in a small watershed on the North Slope of Alaska. This volume describes results by a research team charged with seeking answers to a number of questions related to disturbance in tundra regions: will short-term disturbances have long-term ecological consequences? Will localized effects be transferred to adjacent systems, e.g., from terrestrial to aquatic? Is it possible to extrapolate understanding of impacts from one landscape to another? The results reported in this volume are an important contribution towards the goal of implementing ecosystem-based management in arctic tundra landscapes. Landscape function and disturbance in Arctic Tundra covers a broad array of topics, from ecosystem physiology to landscape modeling. It is an important source for researchers and students interested in arctic ecology, as well as for environmental managers concerned with practical issues of disturbance.
    Type of Medium: Monograph available for loan
    Pages: XX, 437 Seiten , Illustrationen , 24 cm
    ISBN: 3-540-59263-6
    Series Statement: Ecological Studies 120
    Language: English
    Note: Contents: I INTRODUCTION. - 1 Ecosystem Response, Resistance, Resilience, and Recovery in Arctic Landscapes: Introduction / J. F. Reynolds and J. D. Tenhunen. - 1.1 Introduction. - 1.2 NRC Committee Report. - 1.3 The R4D Program. - 1.3.1 Objectives and Conceptual Framework. - 1.3.2 Program Implementation. - 1.3.3 Landscape Function. - 1.4 Summary. - References. - 2 Integrated Ecosystem Research in Northern Alaska, 1947-1994 / G. R. Shaver. - 2.1 Introduction. - 2.2 Early Days at NARL. - 2.3 The U.S. Tundra Biome Program. - 2.4 The Meade River RATE Program. - 2.5 Eagle Creek and Eagle Summit. - 2.6 The Arctic LTER Program at Toolik Lake. - 2.7 Other Studies In Alaska and Elsewhere. - 2.8 Summary and Prospects. - References. - 3 Disturbance and Recovery of Arctic Alaskan Vegetation / D. A. Walker. - 3.1 Introduction. - 3.2 Disturbance and Recovery. - 3.3Typical Disturbance and Recovery Patterns. - 3.3.1 Small Disturbed Patches. - 3.3.2 Contaminants. - 3.3.2.1 Hydrocarbon Spills. - 3.3.2.2 Seawater and Reserve-Pit Spills. - 3.3.3 Fire. - 3.3.4 Transportation Corridors. - 3.3.4.1 Bulldozed Tundra and Related Disturbances. - 3.3.4.2 Off-Road Vehicle Trails. - 3.3.4.2.1 Summer Travel. - 3.3.4.2.2 Winter Travel. - 3.3.4.3 Permanent Roads and Pads. - 3.3.4.4 Gravel Mines. - 3.3.4.5 Native Species in Revegetation of Gravel Pads and Mines. - 3.3.4.6 Road Dust. - 3.3.4.7 Roadside Impoundments. - 3.3.5 Cumulative Impacts. - 3.4 Conclusions. - References. - 4 Terrain and Vegetation of the Imnavait Creek Watershed / D. A. Walker and M. D. Walker. - 4.1 Introduction. - 4.2 Terrain. - 4.2.1 Glacial Deposits. - 4.2.2 Retransported Hillslope Deposits. - 4.2.3 Colluvial Basin Deposits. - 4.2.4 Floodplain Deposits. - 4.3 Vegetation. - 4.3.1 Flora. - 4.3.2 Vegetation Types. - 4.3.2.1 Lichen-Covered Rocks. - 4.3.2.2 Dry Heath. - 4.3.2.2.1 Exposed Sites. - 4.3.2.2.2 Snowbeds. - 4.3.2.3 Tussock Tundra. - 4.3.2.4 Riparian Areas. - 4.3.2.5 Mires. - 4.3.2.6 Beaded Ponds. - 4.4 West-Facing Toposequence. - 4.5 Terrain Sensitivity to Disturbance. - 4.6 Conclusions. - Appendix A. List of Plants for Imnavait Creek, Alaska. - References. - 5 Vegetation Structure and Aboveground Carbon and Nutrient Pools in the Imnavait Creek Watershed / S. C. Hahn, S. F. Oberbauer, R. Gebauer, N. E. Grulke, O. L. Lange, and J. D. Tenhunen. - 5.1 ntroduction. - 5.2 Description of Vegetation. - 5.3 Sampling Methods. - 5.3.1 Cover. - 5.3.2 Biomass and Nutrient Pools. - 5.4 Cover. - 5.5 Aboveground Biomass. - 5.5.1 Live Biomass. - 5.5.2 Photosynthetic Biomass. - 5.5.3 Lichen Biomass. - 5.5.4 Organic Litter. - 5.5.5 Watershed Patterns. - 5.6 Nutrient Pools. - 5.6.1 N and P in Heath Cryptogams. - 5.6.2 N and P in Communities. - 5.7 Discussion and Conclusions. - References. - II PHYSICAL ENVIRONMENT, HYDROLOGY, and TRANSPORT. - 6 Energy Balance and Hydrological Processes in an Arctic Watershed / L. Hinzmann, D. L. Kane, C. S. Benson, and K. R. Everett. - 6.1 Introduction. - 6.2 Radiation and Thermal Regimes. - 6.2.1 Surface Energy Balance. - 6.2.2 Snow Cover and Soil Thermal Regime. - 6.3 Hydrological Processes. - 6.3.1 Snowmelt. - 6.3.2 Plot and Basin Water Balance. - 6.3.3 Runoff and Basin Discharge. - 6.3.4 Precipitation, Evaporation, and Evapotranspiration. - 6.4 Energy Balance and Hydrology Models. - 6.4.1 Simulation of the Thermal Regime. - 6.4.2 Simulation of Snowmelt. - 6.4.3 Simulation of Catchment Runoff. - 6.5 Conclusions. - References. - 7 Shortwave Reflectance Properties of Arctic Tundra Landscapes / A. S. Hope and D. A. Stow. - 7.1 Introduction. - 7.2 Shortwave Reflectance Studies in Arctic Environments. - 7.2.1 Environmental Considerations. - 7.2.2 Radiometric Data. - 7.2.3 Image Data. - 7.3 Spectral Reflectance. - 7.3.1 Aboveground Biomass. - 7.3.2 Vegetation Composition. - 7.3.3 Landscape Patterns. - 7.3.4 Effects of Dust Deposition. - 7.4 Albedo. - 7.4.1 Undisturbed Tussock Tundra. - 7.4.2 Effects of Dust Deposition. - 7.5 Conclusions. - References. - 8 Isotopic Tracers for Investigating Hydrological Processes / L. W. Cooper, I. L. Larsen, C. Solis, J. M. Grebmeier, C. R. Olsen, D. K. Solomon, and R. B. Cook. - 8.1 Introduction. - 8.1.1 Units. - 8.1.2 Conservative vs Nonconservative Isotopes. - 8.2 Nonconservative Tracers. - 8.3 Sulfur-35. - 8.4 Oxygen-18. - 8.4.1 Oxygen-18 Content of Snowpack. - 8.4.2 Oxygen-18 Content of Imnavait Creek. - 8.4.3 Oxygen-18 Content of Soil Moisture. - 8.4.4 Covariance of Oxygen-18 and Deuterium in Watershed Compartments. - 8.4.5 Covariance of Oxygen-18 and Deuterium in Plant Water. - 8.5 Long-Lived Radioisotopes: Lead-210 and Cesium-137. - 8.5.1 Distribution of 137Cs on Tundra and in Lake Sediments. - 8.5.2 Cycling of 137Cs in Annual Berries. - 8.5.3 Distribution of 210Pb in Tundra. - 8.6 Conclusions. - References. - III NUTRIENT AND CARBON FLUXES. - 9 Surface Water Chemistry and Hydrology of a Small Arctic Drainage Basin / K. R. Everett, D. L. Kane, and L. D. Hinzman. - 9.1 Introduction. - 9.2 Watershed Instrumentation. - 9.3 Snowmelt Period. - 9.3.1 Snowmelt Hydrology. - 9.3.2 Snowmelt Chemistry . - 9.3.2.1 Overland Flow. - 9.3.2.2 Water Track Flow. - 9.3.2.3 Imnavait Creek Flow. - 9.4 Post Snowmelt Period. - 9.4.1 Atmospheric Inputs. - 9.4.1.1 Rainfall. - 9.4.1.2 Dry Deposition. - 9.4.1.3 Rime. - 9.4.2 Water Chemistry. - 9.4.2.1 Overland Flow. - 9.4.2.2 Active Layer Flow. - 9.4.2.3 Imnavait Creek Flow. - 9.5 Conclusions. - References. - 10 Nutrient Availability and Uptake by Tundra Plants / J. P. Schimel, K. Kielland, and F. S. Chapin III. - 10.1 Introduction. - 10.2 Controls on Mineralization and Nutrient Supply. - 10.2.1 Patterns of Nutrient Supply in the Soil. - 10.2.2 Patterns of Mineralization. - 10.2.3 Controls on N and P Mineralization. - 10.2.4 Controls on Decomposition and Mineralization. - 10.2.4.1 Temperature. - 10.2.4.1.1 Enzyme Activities. - 10.2.4.1.2 Microbial Activity at Low Temperatures. - 10.2.4.1.3 Freeze-Thaw Events. - 10.2.4.2 Effects of Low Oxygen on Microbial Activity and Mineralization. - 10.2.4.3 Substrate Quality. - 10.3 Fate of Available Nutrients. - 10.3.1 Microbial Nutrient Uptake and Competition with Plants. - 10.3.2 Plant Uptake. - 10.3.2.1 Soil Factors Controlling Nutrient Absorption. - 10.3.2.2 Rooting Strategies. - 10.3.2.3 Uptake Characteristics of Tundra Plants. - 10.3.2.4 Retranslocation vs Current Uptake. - 10.4 Disturbances. - 10.4.1 Vehicle Tracks. - 10.4.2 Road Dust. - 10.4.3 Gray Water. - 10.4.4 Climate Change. - References. - 11 Landscape Patterns of Carbon Dioxide Exchange in Tundra Ecosytems / S. F. Oberbauer, W. Cheng, C. T. Gillespie, B. Ostendorf, A. Sala, R. Gebauer, R. A. Virginia, and J. D. Tenhunen. - 11.1 Introduction. - 11.2 Methods. - 11.2.1 Community Types. - 11.2.2 Leaf Photosynthesis. - 11.2.3 Ecosystem Efflux. - 11.2.4 Ecosystem Net CO2 Exchange. - 11.3 CO2 Uptake. - 11.3.1 Factors Affecting CO2 Uptake. - 11.3.1.1 Light. - 11.3.1.2 Temperature. - 11.3.1.3 Phenology. - 11.3.1.4 Water Availability. - 11.3.1.5 Nutrition. - 11.3.2 Landscape Patterns in Leaf Photosynthesis. - 11.4 CO2 Efflux. - 11.4.1 Factors Affecting CO2 Efflux. - 11.4.1.1 Live Plant Biomass. - 11.4.1.2 Soil Quality. - 11.4.1.3 Thaw Depth and Depth to Water Table. - 11.4.1.4 Soil Moisture. - 11.4.1.5 Soil Temperature. - 11.4.2 Landscape Patterns of CO2 Efflux. - 11.4.3 Daily and Seasonal Patterns of CO2 Efflux. - 11.4.4 Dust Deposition Effects on CO2 Efflux. - 11.5 Landscape Patterns in Net CO2 Exchange. - 11.6 Conclusions. - References. - 12 Control of Tundra Methane Emission by Microbial Oxidation / S. C. Whalen, W. S. Reeburgh, and C. E. Reimers. - 12.1 Introduction. - 12.2 Sampling Procedure. - 12.3 Results and Discussion. - 12.3.1 Methane Flux and Environmental Variables in Tundra and Taiga. - 12.3.2 Physiology, Controls, and Potential for Microbial CH4 Oxidation. - 12.3.3 Methane Oxidation by Tundra Soils in a Warmer Climate. - 12.4 Conclusions. - References. - 13 Dynamics of Dissolved and Particulate Car
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Associated volumes
    Call number: 9/M 96.0096
    In: IGCP project
    Type of Medium: Monograph available for loan
    Pages: XVI, 604 S.
    ISBN: 3540554726
    Series Statement: IGCP project 233
    Classification:
    Regional Geology
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: M 96.0550 ; AWI G6-96-0128
    Description / Table of Contents: A lake, as a body of water, is in continuous interaction with the rocks and soils in its drainage basin, the atmosphere, and surface and groundwaters. Human industrial and agricultural activities introduce new inputs and processes into lake systems. This volume is a selection of ten contributions dealing with diverse aspects of lake systems, including such subjects as the geological controls of lake basins and their histories, mixing and circulation patterns in lakes, gaseous exchange between the water and atmosphere, and human input to lakes through atmospheric precipitation and surficial runoff. This work was written with a dual goal in mind: to serve as a textbook and to provide professionals with in-depth expositions and discussions of the more important aspects of lake systems.
    Type of Medium: Monograph available for loan
    Pages: XVI, 334 Seiten , Illustrationen
    Edition: 2. ed.
    ISBN: 3540578919
    Classification:
    Sedimentology
    Language: English
    Note: Contents: 1 Global Distribution of Lakes / M. MEYBECK. - 1 Introduction. - 2 Background Material and Approaches to Global Lake Census. - 2.1 Data Used. - 2.2 Approaches to Global Lake Census. - 3 General Laws of Lake Distribution. - 3.1 Lake Density . - 3.2 Limnic Ratio. - 4 Distribution of Lakes of Tectonic Origin. - 5 Lakes of Glacial Origin. - 5.1 Lake Densities. - 5.2 Global Deglaciated Area. - 5.3 Total Number of Glacial Lakes. - 6 Fluvial Lakes. - 7 Global Distribution of Crater Lakes. - 8 Global Distribution of Saline Lakes. - 8.1 Coastal Lagoons. - 8.2 Salinized Lakes due to Evaporation. - 9 Global Lake Distribution. - 9.1 Extrapolation Approach. - 9.2 Lake Type Approach. - 9.3 Climatic Typology Approach. - 9.4 Lake Distribution in Endorheic Areas. - 9.5 Global Dissolved Salt Distribution in Lakes. - 10 Major Changes in Global Lake Distribution in the Geological Past. - 10.1 Lake Ages. - 10.2 Historical Changes. - 10.3 Postglacial Changes. - 11 Discussion and Conclusions. - References. - 2 Hydrological Processes and the Water Budget of Lakes / T. C. WINTER. - 1 Introduction. - 2 Hydrological System with Regard to Lakes. - 2.1 Interaction of Lakes with Atmospheric Water. - 2.2 Interaction of Lakes with Surface Water. - 2.3 Interaction of Lakes with Subsurface Water. - 2.4 Change in Lake Volume. - 3 Summary. - References. - 3 Hydrological and Thermal Response of Lakes to Climate: Description and Modeling / S. W. HOSTETLER. - 1 Introduction. - 2 Hydrological Response. - 3 The Hydrological Budget. - 4 Hydrological Models. - 5 Thermal Response. - 5.1 Energy Budget and Energy Budget Models. - 5.2 Models and Modeling. - 6 Use of Models to Link Lakes with Climate Change. - 7 Input Data Sets. - 8 Sample Applications. - 9 Summary. - References. - 4 Mixing Mechanisms in Lakes / D. M. IMBODEN and A. WÜEST. - 1 Transport and Mixing. - 2 Lakes as Physical Systems. - 3 Fluid Dynamics: Mathematical Description of Advection and Diffusion. - 3.1 Equations of Fluid Motion. - 3.2 Turbulence, Reynolds' Stress, and Eddy Diffusion. - 3.3 Vertical Momentum Equation. - 3.4 Nonlocal Diffusion and Transilient Mixing. - 4 Density and Stability of Water Column. - 4.1 Equation of State of Water. - 4.2 Potential Temperature and Local Vertical Stability. - 5 Energy Fluxes: Driving Forces Behind Transport and Mixing. - 5.1 Thermal Energy. - 5.2 Potential Energy. - 5.3 Kinetic Energy. - 5.4 Turbulent Kinetic Energy Balance in Stratified Water. - 5.5 Internal Turbulent Energy Fluxes: Turbulence Cascade. - 6 Mixing Processes in Lakes. - 6.1 Waves and Mixing. - 6.2 Mixing in the Surface Layer. - 6.3 Diapycnal Mixing. - 6.4 Boundary Mixing. - 6.5 Double Diffusion. - 6.6 Isopycnal Mixing. - 7 Mixing and Its Ecological Relevance. - 7.1 Time Scales of Mixing. - 7.2 Reactive Species and Patchiness. - 7.3 Mixing and Growth: The Search for an Ecological Steering Factor. - References. - 5 Stable Isotopes of Fresh and Saline Lakes / J. R. GAT. - 1 Introduction. - 1.1 Isotope Separatio During Evaporation. - 2 Small-Area Lakes. - 2.1 Seasonal and Annual Changes. - 2.2 Deep Freshwater Lakes. - 2.3 Transient Surface-Water Bodies. - 3 Interactive and Feedback Systems. - 3.1 Network of Surface-Water Bodies. - 3.2 Recycling of Reevaporated Moisture into the Atmosphere. - 3.3 Large Lakes. - 3.4 Large-Area Lakes with Restricted Circulation. - 4 Saline Lakes. - 4.1 Isotope Hydrology of Large Salt Lakes. - 4.2 Ephemeral Salt Lakes and Sabkhas. - 5 Isotopie Paleolimnology. - 6 Conclusions: From Lakes to Oceans. - References. - 6 Exchange of Chemicals Between the Atmosphere and Lakes / P. VLAHOS, D. MACKAY, S. J. EISENREICH, and KC. HORNBUCKLE. - 1 Introduction. - 2 Air-Water Partitioning Equilibria. - 3 Diffusion Between Water and Air. - 4 Volatilization and Absorption: Double-Resistance Approach. - 5 Factors Affecting Mass-Transfer Coefficients. - 6 Partitioning of Chemical to Paniculate Matter in Air and Water. - 6.1 Air. - 6.2 Water. - 7 Atmospheric Deposition Processes. - 7.1 Dry Deposition. - 7.2 Wet Deposition. - 8 Specimen Calculation. - 8.1 Step 1: Physicochemical Properties. - 8.2 Step 2: Mass-Transfer Coefficients. - 8.3 Step 3: Sorption in Air and Water. - 8.4 Step 4: Equilibrium Status. - 8.5 Step 5: Volatilization and Deposition Rates. - 9 Role of Air-Water Exchange in Lake Mass Balances. - 10 Case Studies. - 10.1 Mass Balance on Siskiwit Lake, Isle Royale. - 10.2 Mass Balance on Lake Superior. - 10.3 Air-Water Exchange in Green Bay, Lake Michigan. - 10.4 Air-Water Exchange in Lake Superior. - 11 Conclusions. - References. - 7 Atmospheric Depositions: Impact of Acids on Lakes / W. STUMM and J. SCHNOOR. - Abstract. - 1 Introduction: Anthropogenic Generation of Acidity. - 1.1 Genesis of Acid Precipitation. - 2 Acidity and Alkalinity: Neutralizing Capacities. - 2.1 Transfer of Acidity (or Alkalinity) from Pollution Through the Atmosphere to Ecosystems. - 3 Acidification of Aquatic and Terrestrial Ecosystems. - 3.1 Disturbance of H+ Balance from Temporal or Spatial Decoupling of the Production and Mineralization of the Biomass. - 3.2 In Situ H+ Ion Neutralization in Lakes. - 3.3 Krug and Frink Revisited. - 4 Brønsted Acids and Lewis Acids: Pollution by Heavy Metals, as Influenced by Acidity. - 4.1 Cycling of Metals. - 4.2 Pb in Soils. - 5 Impact of Acidity on Ecology in Watersheds. - 5.1 Soils. - 5.2 Lakes. - 5.3 Nitrogen Saturation of Forests. - 6 Critical Loads. - 6.1 Critical Load Maps. - 6.2 Models for Critical Load Evaluation. - 7 Case Studies. - 7.1 Chemical Weathering of Crystalline Rocks in the Catchment Area of Acidic Ticino Lakes, Switzerland. - 7.2 Watershed Manipulation Project at Bear Brooks, Maine. - 8 Summary. - References. - 8 Redox-Driven Cycling of Trace Elements in Lakes / J. HAMILTON-TAYLOR and W. DAVISON. - 1 Introduction. - 2 Major Biogeochemical Cycles and Pathways. - 3 Iron and Manganese. - 3.1 Transformations and Cycling. - 3.2 Iron and Manganese Compounds as Carrier Phases. - 4 Sediment-Water Interface. - 4.1 Diffusive Flux from Sediments. - 4.2 Evidence of Little or No Diffusive Efflux from Sediments. - 4.3 Transient Remobilization. - 4.4 Diffusive Flux into Sediments. - 5 Pathways Involving Redox Reactions Directly: Case Studies. - 5.1 Arsenic. - 5.2 Chromium. - 5.3 239,240Pu. - 5.4 Selenium 6 Pathways Involving Redox Reactions Indirectly: Case Studies. - 6.1 137Cs. - 6.2 Stable Pb, 210Pb, and 210Po. - 6.3 Zinc. - 7 Summary and Conclusions. - References. - 9 Comparative Geochemistry of Marine Saline Lakes / F. T. MACKENZIE, S. VINK, R. WOLLAST, and L. CHOU. - 1 Introduction. - 2 General Characteristics of Marine Saline Lakes. - 3 Comparative Sediment-Pore-Water Reactions. - 3.1 Mangrove Lake, Bermuda. - 3.2 Solar Lake, Sinai. - 4 Conclusions. - References. - 10 Organic Matter Accumulation Records in Lake Sediments / P. A. MEYERS and R. ISHIWATARI. - 1 Introduction. - 1.1 Significance of Organic Matter in Lake Sediments. - 1.2 Origins of Organic Matter to Lake Sediments. - 1.3 Alterations of Organic Matter During Deposition. - 1.4 Similarities and Differences Between Organic Matter in Sediments of Lakes and Oceans. - 1.5 Dating of Lake-Sediment Records. - 2 Indicators of Sources and Alterations of Total Organic Matter in Lake Sediments. - 2.1 Source Information Preserved in C/N Ratios of Sedimentary Organic Matter. - 2.2 Source Information from Carbon-Stable Isotopic Compositions. - 2.3 Source Information from Nitrogen-Stable Isotopic Compositions. - 3 Origin and Alterations of Humic Substances. - 4 Sources and Alterations of Lipid Biomarkers. - 4.1 Alteration of Lipids During Deposition. - 4.2 Changes in Sources vs Selective Diagenesis. - 4.3 Effects of Sediment Grain Size on Geolipid Compositions. - 4.4 Source Records of Alkanes in Lake Sediments. - 4.5 Preserv
    Location: Upper compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: M 96.0318
    Type of Medium: Monograph available for loan
    Pages: XVI, 582 S.
    ISBN: 3540591869
    Classification:
    Sedimentology
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: M 99.0387
    Type of Medium: Monograph available for loan
    Pages: XXIV, 535 S.
    ISBN: 3540611282
    Classification:
    Sedimentology
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: 9/M 00.0190
    Type of Medium: Monograph available for loan
    Pages: XI, 273 S.
    ISBN: 3540649476
    Classification:
    Applied Geology
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...