ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (4)
  • 1995-1999  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 135-146 
    ISSN: 0887-6266
    Keywords: polymer membranes ; temperature ; gas separations ; polyimides ; activation energy for permeation ; heat of sorption ; activation energy for diffusion ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The temperature dependence of gas sorption and transport properties is examined for two polyimide isomers. The permeabilities and solubilities of five gases in these materials are reported over an extensive temperature range from 35 to 325°C. Also, the activation energies for permeation, the heats of sorption, and the activation energies for diffusion obtained for both polyimides are compared and correlated with physical properties of the polymers and penetrants. The influence of temperature on the selective properties of these membrane materials is discussed for three gas separations; He/N2, CO2/CH4, and O2/N2. Thorough analysis of these data provides insight into the influence of the subtle difference in chain structure of the two isomers. The performance of the 6FDA-6Fp DA as a separation membrane at high temperatures suggests that it is an outstanding candidate for use in novel elevated temperature applications. ©1995 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 1861-1868 
    ISSN: 0887-6266
    Keywords: dilation ; semicrystalline polymer ; poly(4-methyl-1-pentene) ; gas sorption ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Sorption and volume dilation isotherms of semicrystalline poly(4-methyl-1-pentene) (PMP) were measured using CO2 and C3H8 as penetrants, which have sieving diameters of 3.3 and 4.3 Å, respectively. On the other hand, the PMP crystal has a void width of approximately 4 Å as estimated by X-ray diffraction, so it was anticipated that CO2 would be able to sorb into the PMP crystal while C3H8 would not. The data show that C3H8 has a constant partial molar volume of approximately 87 cc/mol, just above the value reported in other rubbery polymers, and are consistent with the hypothesis that the C3H8 molecules are too large to sorb into the PMP crystals. The partial molar volume of CO2 was found to be 39 cc/mol for CO2 weight fractions of up to 0.03. Since the typical partial molar volume of CO2 in rubbery materials is 46 cc/mol, the lower values in this study were attributed to CO2 sorption into crystalline regions of the polymer, which provided no dilation. Application of a two-phase model using the assumption of Henry's law sorption showed that apparently all C3H8 sorption was occurring in the amorphous region but approximately 16% of CO2 sorption occurred in the crystalline regions. © 1996 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 57 (1995), S. 687-703 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Kinetics and equilibria of sorption and desorption of d-limonene in three polypropylene films (unoriented polypropylene [UN], uniaxially oriented polypropylene [UA], and biaxially oriented polypropylene [BA]) were studied at 30°C and various penetrant activities. The weight percent uptake of a saturated vapor of limonene in UN, BA, and UA films ranged ranged from 12.5 to 19.0%. The kinetics of sorption of a saturated vapor of limonene in these polymers exhibits an increasing tendency toward Fickian transport as the degree of orientation increases, with the highly oriented BA approaching a Fickian response. As the penetrant activity is lowered, sorption kinetics tends to show a Fickian response more closely even for the UN and the UA films. Desorption of limonene from the three samples appears to be Fickian and considerably faster than sorption in the initial stages; however, the process decelarates after roughly half of the penetrant has desorbed. Subsequent exposure of the three oriented films to a saturated vapor of limonene resulted in identical sorption kinetics, suggesting the absence of crazing or other irreversible damage often associated with anomalous sorption in glassy polymers. These results illustrate that the concentration dependent anomalies in kinetics of sorption of a large penetrant such as limonene in the unoriented polypropylene film may be influenced by orientation to yield Fickian transport even at the highest external surface concentration. Thus, the orientation processes appear to affect large-scale swelling-induced relaxations to a larger degree than it does the diffusional processes which are dependent on smaller-scale segmental motions. © 1995 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 487-494 
    ISSN: 0887-6266
    Keywords: gas separations ; diffusion ; gas sorption ; spirobiindane bisphenol ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Transport properties of pure gases in polycarbonates, polyesters, and polyetherimides based on 6,6′-dihydroxy-3,3,3′,3′-tetramethyl-1,1′-spiro biindane (SBI) and bisphenol-A (BPA) are compared at 35°C. The SBI monomer contains two spiro-linked five-membered rings which are fused to the phenyl rings at the meta and para positions to the hydroxyl groups. This molecular structure gives SBI-based polymers with higher fractional free volume (FFV) and lower intramolecular motions as compared to the BPA-based analogs. The inhibition of chain packing due to the SBI moiety yields polymers with much higher permeabilities for all the gases studied, despite the hinderance of mobility associated with the SBI structure. Simultaneous increase in selectivity was also observed for some gas pairs. Oxygen permeabilities up to 5.9-fold higher with increases of up to 13% in O2/N2 selectivities were observed for a polyester based on SBI as compared to its analog based on BPA. Higher permeabilities of up to 4.3-fold for He and up to 4.8-fold for CO2 were observed due to the substitution of SBI for BPA. Not surprisingly, lower values of He/CH4 and CO2/CH4 selectivities were obtained for the more open SBI-containing polymers. The changes in fractional free volume and inhibition of small-scale mobility for some materials caused by the SBI moiety were measured and used in the interpretation of the gas transport properties. The individual contributions of diffusivity and solubility to the overall transport behavior of the polymers are discussed and correlated to the structural alterations caused by the SBI substitution for BPA monomer. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...