ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (5)
  • 1995-1999  (5)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 57 (1995), S. 630-640 
    ISSN: 0730-2312
    Keywords: internal pH ; transformation ; c-fos ; AP-1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Changes in intracellular pH (pHin) take part in the mitogenic response. Their importance has been stressed by the finding that mouse fibroblasts expressing a yeast proton pumping ATPase (PMA1) exhibit a transformed phenotype and are tumorigenic. These cells do maintain a higher pHin, supporting the idea that elevated pHin may act as a proliferative trigger. Here we show that cells constitutively expressing PMA1 have higher levels of the AP-1 transcription factor. The use of stable transfectants and transient transfection assays show that PMA1 activity induces transactivation of the c-fos promoter. The activation of the promoter is mediated throughout the serum response element (SRE). The use of protein kinase C inhibitors suggests that AP-1 activation is achieved through a pathway independent of protein kinase C.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 11 (1995), S. 1393-1398 
    ISSN: 0749-503X
    Keywords: glucose transport ; hexose diffusion ; sugar transport ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: It has been claimed that the low-affinity component of glucose transport in Saccharomyces cerevisiae is due to passive diffusion of the sugar across the plasma membrane. We have investigated this possibility. For this purpose we have measured the permeability coefficient of hexoses in this organism. We have found that this coefficient is at least two to three orders of magnitude lower than required to account for the low-affinity component of glucose transport, and have concluded that this component is not due to passive diffusion.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 13 (1997), S. 541-549 
    ISSN: 0749-503X
    Keywords: cytoskeleton ; endocytosis ; yeast maltose transporter ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Certain components of the cytoskeleton play a role in yeast fluid-phase endocytosis as well as in endocytosis of the α-factor when this pheromone is bound to its 7-transmembrane segment receptor. The yeast maltose transporter is a 12-transmembrane segment protein that, under certain physiological conditions, is degraded in the vacuole after internalization by endocytosis. In this work, the possible role of the cytoskeleton in endocytosis of this transporter has been investigated. Using mutants defective in β-tubulin, actin and the actin-binding proteins Sac6 and Abp85, as well as nocodazole, which inhibits formation of microtubules, we have shown that actin microfilaments are involved in endocytosis of the maltose transporter whereas microtubules are not.© 1997 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0749-503X
    Keywords: AFT1 ; transcriptional factor ; iron uptake ; phosphorylation ; respiratory growth ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: High-affinity iron uptake in Saccharomyces cerevisiae involves the extracytoplasmic reduction of ferric ions by FRE1 and FRE2 reductases. Ferrous ions are then transported across the plasma membrane through the FET3 oxidase-FTR1 permease complex. Expression of the high-affinity iron uptake genes is induced upon iron deprivation. We demonstrate that AFT1 is differentially involved in such regulation. Aft1 protein is required for maintaining detectable non-induced levels of FET3 expression and for induction of FRE2 in iron starvation conditions. On the contrary, FRE1 mRNA induction is normal in the absence of Aft1, although the existence of AFT1 point mutations causing constitutive expression of FRE1 (Yamaguchi-Iwai et al., EMBO J. 14: 1231-1239, 1995) indicates that Aft1 may also participate in FRE1 expression in a dispensable way. The alterations in the basal levels of expression of the high-affinity iron uptake genes may explain why the AFT1 mutant is unable to grow on respirable carbon sources. Overexpression of AFT1 leads to growth arrest at the G1 stage of the cell cycle. Aft1 is a transcriptional activator that would be part of the different transcriptional complexes interacting with the promoter of the high-affinity iron uptake genes. Aft1 displays phosphorylation modifications depending on the growth stage of the cells, and it might link induction of genes for iron uptake to other metabolically dominant requirements for cell growth. © John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 14 (1998), S. 773-781 
    ISSN: 0749-503X
    Keywords: dolichol-PP-GlcNAc2 ; translocation ; endoplasmic reticulum ; alg1 ; exoglucanase ; S. cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Transfer of truncated oligosaccharides to yeast exoglucanase (Exg) in Saccharomyces cerevisiae alg1 has been investigated. When incubated at the non-permissive temperature, alg1 cells secreted into the culture medium, in addition to the exoglucanase glycoforms secreted by wild type, underglycosylated forms as well as material with ionic properties of the non-glycosylated enzyme. As expected, none of the latter had affinity towards concanavalin A, but part of it bound to wheat germ agglutinin (WGA), suggesting that it contained, in addition to non-glycosylated Exg, glycoforms carrying non-reducing terminal GlcNAc. Only the WGA-bound material could be labelled with galactosyltransferase; furthermore, the label could be released by treatment with peptide-N4-N-acetyl-β-glucosamine asparagine amidase. These results unambiguously demonstrate that GlcNAc2 can be transferred from dolichol-PP-GlcNAc2 to one or both sequons of yeast Exg. Accordingly, they support previous observations suggesting that this early intermediate is able to translocate in vivo in order to make its sugar portion accessible to the oligosaccharyltransferase in the lumen of the endoplasmic reticulum. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...