ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 1327-1345 
    ISSN: 0271-2091
    Keywords: unsteady flows ; incompressible viscous flows ; onset of asymmetry ; Navier-Stokes equations ; finite difference method ; bluff bodies ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A computational study of the development of two- dimensional unsteady viscous incompressible flow around a circular cylinder and elliptic cylinders is undertaken at a Reynolds number of 10,000. A higher- order upwind scheme is used to solve the Navier-Stokes equations by the finite difference method in order to study the onset of computed asymmetry around bluff bodies. For the computed cases the ellipses develop asymmetry much earlier than the circular cylinder. The receptivity of the computed flows in the presence of discrete roughness and surface vibration is studied. Finally, the role of discrete roughness in triggering asymmetry for flow past a circular cylinder is studied and compared with flow visualization experiments at Re=10,000
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 215-224 
    ISSN: 0271-2091
    Keywords: orthogonal grids ; hyperbolic grid generation ; Navier-Stokes equations ; higher-order methods ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Body conforming orthogonal grids were generated using a fast hyperbolic method for aerofoils, and were used to solve the Navier-Stokes equation in the generalized orthogonal system for the first time for time accurate simulation of incompressible flow. For grid generation, the Beltrami equation and the definition equation for the orthogonality are solved using a finite difference method. The grids generated around aerofoils by this method have better orthogonality than the results published by earlier investigators. The Navier-Stokes equation at Reynolds numbers of 3000 and 35 000 for NACA 0012 and NACA 0015 respectively, have been solved as an application. The obtained results match quite well with the corresponding experimental results. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 40 (1997), S. 1801-1819 
    ISSN: 0029-5981
    Keywords: higher order ; curved beam ; dynamic ; elastic base ; vibration ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A five-noded thirteen DOF horizontally curved beam element with or without an elastic base is presented. One set of fourth-degree Lagrangian polynomials in natural co-ordinates is used for interpolation of beam geometry and vertical displacement while the angles of transverse rotation and twist are interpolated by another set of third-degree polynomials. For elastic subgrade, the reactive forces offered at any point are assumed to be proportional to the corresponding displacements at that point. The effect of shear deformation is accounted for in the stiffness matrix. In mass matrix evaluation, for dynamic problems, translational as well as rotary intertias have been considered and studied separately. For numerical integration of the stiffness matrix, a four-point Gaussian scheme has been found to be adequate. Numerical results for a number of sample problems and their comparison with analytical solutions have been presented for circular as well as for non-circular curved beams. Displacements, bending moment and torque for static loading with or without elastic foundation, as well as natural frequencies and mode shapes are computed for different cases. Examples include the problem of a cantilever beam of spiral geometry with different parametric values of the spiral and the agreement with the analytical results establishes the efficacy of the element. The performance of the element has been found be be excellent in both static and dynamic conditions. Sufficient details are presented so that the formulation may be readily used. It is hoped that the large number of numerical illustrations will elucidate the validity and the range of applicability of the element and will also serve as benchmark for future researchers. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...