ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (1)
  • Polymer and Materials Science  (1)
  • Analytical Chemistry and Spectroscopy
  • 1995-1999  (2)
Collection
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 118-120 
    ISSN: 0006-3592
    Keywords: biocompatibility ; microfabrication ; biohybrid organs ; immunoisolation ; Islets of Langerhans ; silicon ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A microfabricated silicon-based biocapsule for the immunoisolation of cell transplants is presented. The biocapsule-forming process employs bulk micromachining to define cell-containing chambers within single crystalline silicon wafers. These chambers interface with the surrounding biological environment through polycrystalline silicon filter membranes. The membranes are surface micromachined to present a high density of uniform pores, thus affording sufficient permeability to oxygen, glucose, and insulin. The pore dimensions, as small as 20 nm, are designed to impede the passage of immune molecules and graft-borne viruses. The underlying filter-membrane nanotechnology has been successfully applied in controlled cell culture systems (Ferrari et al., 1995), and is under study for viral elimination in plasma fractionation protocols. Here we report the encouraging results of in vitro experiments investigating the biocompatibility of the microfabricated biocapsule, and demonstrate that encapsulated rat neonatal pancreatic islets significantly outlive and outperform controls in terms of insulin-secretion capability over periods of several weeks. These results appear to warrant further investigations on the potential of cell xenografts encapsulated within microfabricated, immunoisolating environments for the treatment of insulin-dependent diabetes. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 118-120, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 32 (1996), S. 87-94 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Human fibroblasts cultured for 10 days in a collagen sponge migrated through the pores of the sponge and expressed a moderate mitotic activity, which stabilized after 10 days, and a high collagen and protein synthesis. Between 10 and 27 days, the newly synthesized collagen filled the pores of the sponge. This matrix accumulation induced a delayed decrease of collagen and protein synthesis. Finally, after 27 days of culture, the fibroblasts expressed low bio-synthetic activities similar to the ones exhibited in vivo. The newly synthesized matrix was highly differentiated, as shown by the presence of a dense network of quarter-staggered collagen fibrils (42 nm ± 6 nm in diameter) surrounding the cells. The size and the shape of these fibrils demonstrated that the newly synthesized procollagen was fully processed in collagen by removal of their N- and C-terminal propeptides. Moreover, these fibrils were packed in bundles organized into an interwoven network that mimics the pattern of the papillary dermis. These findings show that fibroblasts cultured for one month in a collagen sponge construct large amounts of a highly differentiated connective tissue. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...