ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-12-20
    Description: Enoyl reductase (ENR), an enzyme involved in fatty acid biosynthesis, is the target for antibacterial diazaborines and the front-line antituberculosis drug isoniazid. Analysis of the structures of complexes of Escherichia coli ENR with nicotinamide adenine dinucleotide and either thienodiazaborine or benzodiazaborine revealed the formation of a covalent bond between the 2' hydroxyl of the nicotinamide ribose and a boron atom in the drugs to generate a tight, noncovalently bound bisubstrate analog. This analysis has implications for the structure-based design of inhibitors of ENR, and similarities to other oxidoreductases suggest that mimicking this molecular linkage may have generic applications in other areas of medicinal chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldock, C -- Rafferty, J B -- Sedelnikova, S E -- Baker, P J -- Stuitje, A R -- Slabas, A R -- Hawkes, T R -- Rice, D W -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK. D.Rice@sheffield.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953047" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*metabolism/pharmacology ; Binding Sites ; Boron Compounds/*metabolism/pharmacology ; Crystallography, X-Ray ; Drug Design ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Enzyme Inhibitors/*metabolism/pharmacology ; Escherichia coli/enzymology ; Escherichia coli Proteins ; Fatty Acid Synthase, Type II ; Fatty Acid Synthases/antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; NAD/*metabolism ; Oxidoreductases/antagonists & inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-10-18
    Description: The Escherichia coli DNA binding protein RuvA acts in concert with the helicase RuvB to drive branch migration of Holliday intermediates during recombination and DNA repair. The atomic structure of RuvA was determined at a resolution of 1.9 angstroms. Four monomers of RuvA are related by fourfold symmetry in a manner reminiscent of a four-petaled flower. The four DNA duplex arms of a Holliday junction can be modeled in a square planar configuration and docked into grooves on the concave surface of the protein around a central pin that may facilitate strand separation during the migration reaction. The model presented reveals how a RuvAB-junction complex may also accommodate the resolvase RuvC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rafferty, J B -- Sedelnikova, S E -- Hargreaves, D -- Artymiuk, P J -- Baker, P J -- Sharples, G J -- Mahdi, A A -- Lloyd, R G -- Rice, D W -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1996 Oct 18;274(5286):415-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK. d.rice@sheffield.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8832889" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Base Composition ; Crystallography, X-Ray ; DNA Helicases/metabolism ; DNA, Bacterial/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Endodeoxyribonucleases/metabolism ; Escherichia coli ; *Escherichia coli Proteins ; Hydrogen Bonding ; Models, Molecular ; *Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1997 through July 1, 1997. Bibliographic entries for 1996 and 1997 to date (July 1997) are included. The SAMPEX science team was extremely active, with 27 articles published or submitted to refereed journals, 17 papers published in their entirety in Conference Proceedings, and 74 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings, as well as other activities of the team.
    Keywords: Astrophysics
    Type: NASA-CR-204981 , NAS 1.26:204981
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1995 through July 1, 1996. Bibliographic entries for 1995 and 1996 to date (July 1996) are included. The SAMPEX science team was extremely active, with 20 articles published or submitted to refereed journals, 18 papers published in their entirety in Conference Proceedings, and 53 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings of anomalous cosmic rays, solar energetic particles, magnetospheric precipitating electrons, trapped H and He isotopes, and data analysis activities.
    Keywords: Astrophysics
    Type: NASA-CR-201539 , NAS 1.26:201539
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...