ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-10-06
    Description: The inhibitory gamma-aminobutyric acid-containing (GABAergic) neurons of the thalamic reticular and perigeniculate nuclei are involved in the generation of normal and abnormal synchronized activity in thalamocortical networks. An important factor controlling the generation of activity in this system is the amplitude and duration of inhibitory postsynaptic potentials (IPSPs) in thalamocortical cells, which depend on the pattern of activity generated in thalamic reticular and perigeniculate cells. Activation of single ferret perigeniculate neurons generated three distinct patterns of GABAergic IPSPs in thalamocortical neurons of the dorsal lateral geniculate nucleus: Low-frequency tonic discharge resulted in small-amplitude IPSPs mediated by GABAA receptors, burst firing resulted in large-amplitude GABAA IPSPs, and prolonged burst firing activated IPSPs mediated by GABAA and GABAB receptors. These functional properties of GABAergic inhibition can reconfigure the operations of thalamocortical networks into patterns of activity associated with waking, slow-wave sleep, and generalized seizures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, U -- Sanchez-Vives, M V -- McCormick, D A -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):130-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311919" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Bicuculline/analogs & derivatives/pharmacology ; Dendrites/physiology/ultrastructure ; Ferrets ; GABA Agonists/pharmacology ; GABA Antagonists/pharmacology ; Geniculate Bodies/cytology/physiology ; Glutamic Acid/pharmacology ; In Vitro Techniques ; Lysine/analogs & derivatives/pharmacology ; Neurons/*physiology/ultrastructure ; Organophosphorus Compounds/pharmacology ; Patch-Clamp Techniques ; Presynaptic Terminals/ultrastructure ; Receptors, GABA-A/*physiology ; Receptors, GABA-B/*physiology ; *Synaptic Transmission ; Thalamic Nuclei/cytology/*physiology ; gamma-Aminobutyric Acid/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-09-05
    Description: In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Wong, C -- Thoma, R S -- Richman, R -- Wu, Z -- Piwnica-Worms, H -- Elledge, S J -- GM17763/GM/NIGMS NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1497-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278511" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/*metabolism ; Cell Cycle Proteins/antagonists & inhibitors/*metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 11 ; Cytoskeletal Proteins ; *DNA Damage ; *F-Box Proteins ; G2 Phase ; HeLa Cells ; Humans ; Mice ; *Mitosis ; Molecular Sequence Data ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Tyrosine Phosphatases/metabolism ; Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Transfection ; *Tyrosine 3-Monooxygenase ; *Ubiquitin-Protein Ligases ; *cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-03-03
    Description: Cell cycle checkpoints enhance genetic fidelity by causing arrest at specific stages of the cell cycle when previous events have not been completed. The tumor suppressor p53 has been implicated in a G1 checkpoint. To investigate whether p53 also participates in a mitotic checkpoint, cultured fibroblasts from p53-deficient mouse embryos were exposed to spindle inhibitors. The fibroblasts underwent multiple rounds of DNA synthesis without completing chromosome segregation, thus forming tetraploid and octaploid cells. Deficiency of p53 was also associated with the development of tetraploidy in vivo. These results suggest that murine p53 is a component of a spindle checkpoint that ensures the maintenance of diploidy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cross, S M -- Sanchez, C A -- Morgan, C A -- Schimke, M K -- Ramel, S -- Idzerda, R L -- Raskind, W H -- Reid, B J -- R01CA55814/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 3;267(5202):1353-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7871434" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cells, Cultured ; DNA/biosynthesis ; Demecolcine/pharmacology ; Diploidy ; Female ; Genes, p53 ; Male ; Mice ; *Mitosis ; Nocodazole/pharmacology ; Ploidies ; Spindle Apparatus/*physiology ; Tumor Suppressor Protein p53/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...