ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 8 (1995), S. 191-194 
    ISSN: 0894-3230
    Keywords: Organic Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The reaction of bis-silylated ynamines with different nitrosyl reagents affords products derived from an electrophilic attack at the β-carbon atom and not the expected alkynyldiazonium salts.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Absolute rate coefficient for the gas-phase reaction of NO3 with 3-fluoropropene has been measured using the discharge-flow technique coupled to a LIF detection system for a range of temperatures from 296 K to 430 K. The measured room temperature rate constant is (0.39 ± 0.02) × 10-14 molecule-1 cm3 s-1. The Arrhenius expression k = (7.17 ± 3.34) × 10-12 exp[-(2248 ± 169)/T] is proposed for the reaction.The reactivity of alkenes containing halogen atoms is discussed and compared to that of simple alkenes, on the basis of the correlations between the reactivity against NO3 and the ionization potential of the alkenes.Tropospheric half life of 3-fluoropropene has been estimated at night and during daytime for typical NO3 and OH trophospheric concentrations. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet: 29: 927-932, 1997.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 145-150 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate constants were determined for the nitrosation reactions of the following substrates: Methyl (MU), Ethyl (EU),Propyl (PU)Butyl (BU), and Allylurea (AU). The rate equation found at a constant pH was: v=k[HNO2] [Urea]. The reactions were carried out in predominantly organic media(dioxane-acetic acid-water) with differing polarities. The proposed reaction mechanism involves the proton transfer from the protonated N-alkyl-N-nitrosourea to the acetate anion. As the polarity of the medium decreased, an approximation of the rate constants of the nitrosation of the different substrates was observed. This approximation can be interpreted as a function of the impediment generated by the R alkyl radical in the rate controlling step. Accordingly, the substrate reactivity will be associated with the ease in which the protonated N-alkyl-N nitrosurea can transfer the proton to the acetate anion. The results achieved in this study are in accordance with there activities observed in the nitrosation of these substrates in aqueous media MU≫(EU≈PU≈BU)〉AU. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 145-150, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 10 (1978), S. 433-452 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The autoinhibiting reaction of ozone with dimethyl sulfide (DMS), has been studied at 296°K and 1.1 kPa (8 torr) as a function of the concentrations of both reactants. The major products of the reaction are H2CO, H2O, CO, and SO2. The specific rate of primary attack of O3 on DMS is immeasurably slow. It is suggested that the rapid overall rate observed for this reaction is due to a chain reaction initiated by the very slow primary reaction. It is concluded that reaction (1) cannot be important under atmospheric conditions and that the major loss process for DMS in the atmosphere is probably reaction with photochemically generated free radicals.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...