ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 626-633 
    ISSN: 0021-9304
    Keywords: magnesium ; calcifying matrix ; osteoblast-like cell culture ; apatite ; collagen sponge ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The induction of a calcifying matrix is of great interest in the restoration of bone defects. In a previous in vitro study we demonstrated that a collagen sponge constituted of type I collagen fibrils, chondroitin sulfates, and hydroxyapatite crystals induces an earlier and a more abundant synthesis of a new extracellular calcifying matrix than do other biomaterials such as collagen or hydroxyapatite alone. Bone mineral contains various amounts of magnesium ions, either adsorbed at the surface of apatite crystals or incorporated inside the crystal structure. Magnesium is known to reduce the degradation rate of tricalcium phosphate ceramics and to influence the crystallization of mineral substance. Thus we evaluated two sponges modified with different substituted apatites. The substituted low magnesium-containing apatite sample decreased the osteoinductive properties of the sponge whereas the substituted high magnesium-containing apatite sample had a toxic effect on bone cells and prevented the formation of any extracellular matrix. Such a toxic effect can be explained by the presence of large numbers of magnesium ions released into the culture medium even though at physiological level magnesium is able to promote bone mineralization and to control the growth of hydroxyapatite crystals. Thus collagen sponges containing hydroxyapatite remain one of the most appropriately evaluated biomaterials used for the restoration of periodontal pockets and bone defects. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 42, 626-633, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...